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Motivated by the question of whether and howwave-wave
interactions should be implemented into atmospheric gravity-
wave parameterizations, the modulation of triadic gravity-
wave interactions by a slowly varying and vertically sheared
mean-flow is considered for a non-rotating Boussinesq fluid
with constant stratification. An analysis using a multiple-
scalesWKBJ expansion identifies twodistinct scaling regimes,
a linear off-resonance regime, and a non-linear near-resonance
regime. Simplifying the near-resonance interaction equa-
tions allows for the construction of a parametrization for
the triadic energy exchange which has been implemented
into a one-dimensionalWKBJ ray-tracing code. Theory and
numerical implementation are validated for test caseswhere
two wave trains generate a third wave train while spec-
trally passing through resonance. In various settings, of in-
teracting vertical wavenumbers, mean-flow shear, and ini-
tial wave amplitudes, the WKBJ simulations are generally
in good agreement with wave-resolving simulations. Both
strongermean-flow shear and smallerwave amplitudes sup-
press the energy exchange among a resonantly interacting
triad. Experiments with mean-flow shear as strong as in
the vicinity of atmospheric jets suggest that internal grav-
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ity wave dynamics are dominated in such regions by wave
modulation. Yet, triadic gravity-wave interactions are likely
to be relevant in weakly sheared regions of the atmosphere.
K E YWORD S
internal gravity waves; wave modulation; triadic wave–wave
interaction; parametrization; ray-tracing

1 | INTRODUCTION1

Internal gravity waves (GWs) are an important mode of atmospheric dynamics, transporting energy and momentum2

over large distances from generation regions to regions of dissipation, thereby significantly influencing the atmo-3

spheric circulation, especially in the middle atmosphere (Fritts and Alexander, 2003; Kim et al., 2003; Plougonven and4

Zhang, 2014). Being too small in scale to be fully resolvable by present-day weather-forecast and climate codes, GWs5

constitute an important aspect of the parameterization problem in these models. Their spectrum is influenced to a6

considerable degree by modulation by a spatially and time dependent resolved flow (Bretherton, 1966; Eckermann7

and Marks, 1997; Senf and Achatz, 2011). Especially at large vertical wavenumbers the observed GW spectrum ex-8

hibits a slope, somewhat independent of time and location (Dewan and Good, 1986; Smith et al., 1987; Fritts and9

Vanzandt, 1993), which is reminiscent of the quasi-universal spectrum GWs are often thought to exhibit in the ocean10

(Garrett and Munk, 1972, 1975; Polzin and Lvov, 2011). The universality of that spectrum is considered an indication11

of a transfer of energy in wavenumber (e.g. Olbers and Eden, 2013), usually attributed to nonlinear wave-wave inter-12

actions (Olbers, 1976; McComas and Bretherton, 1977; Pomphrey et al., 1980; Mueller et al., 1986; Lvov and Tabak,13

2001; Lvov et al., 2004). Wave-turbulence theory (Hasselmann, 1962, 1966; Caillol and Zeitlin, 2000; Nazarenko,14

2011; Eden et al., 2019) is a well-established tool for studies of corresponding spectra, considering statistical ensem-15

bles of GW fields, that most often focus on resonant triad interactions. In all of these the influence of mean-flow16

shear and varying stratification are neglected.17

A complementary approach isWKBJ theory (Bretherton, 1966; Grimshaw, 1975; Achatz et al., 2010, 2017) which,18

instead of considering continuous wave-spectra, describes the development of locally monochromatic GW fields19
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which feature a nearly discrete spectrum. Moreover the WKBJ approach takes into account nonlinear interactions20

between GWs and a spatially and temporally varying mean flow. WKBJ theory is the basis of present-day GW pa-21

rameterizations, however, for most applications relying on a steady-state approximation where GWs instantaneously22

assume an equilibrium distribution defined by the available sources and the mean flow (Kim et al., 2003; Kim et al.,23

2020; Quinn et al., 2020). While the GWs are modulated by the mean flow in this approximation, a GW impact on24

the mean flow is only possible once GWs dissipate, e.g. by wave breaking. Non-dissipative direct GW-mean-flow in-25

teractions, relying on explicit GW transience, can only be described once the steady-state approximation is dropped.26

In numerical implementations this tends to lead to instabilities due to caustics (e.g. Rieper et al., 2013a) that can be27

avoided, however, when WKBJ theory is translated into a spectral formulation (Muraschko et al., 2015). Using this28

approach Bölöni et al. (2016) have shown that direct, non-dissiative GW-mean-flow interactions dominate over dis-29

sipative effects in the dynamics of upward propagating GW packets and the wind induced by them. Hence it seems30

appropriate to generalize GW parameterizations accordingly.31

Many process studies have investigated GW-GW interactions in the atmosphere (e.g. Dong and Yeh, 1988, 1991;32

Fritts et al., 1992; Yi and Xiao, 1997; Huang et al., 2007). However, these have not alleviated the obvious deficiency33

of WKBJ-based GW parameterizations that they do not take such interactions into account (Kim et al., 2003). Shear34

effects are not of leading-order importance in the ocean (e.g. Garrett and Munk, 1972, 1975; Mueller, 1976; Elipot35

et al., 2010), so there it seems appropriate to just supplement the spectral wave-action equation resulting fromWKBJ36

by nonlinear scattering integrals as derived from a wave-turbulence theory (e.g. Olbers and Eden, 2013) assuming a37

zero or constant large-scale flow. In the atmosphere, however, it appears that the modulation of GWs by the large-38

scale flow is the dominant effect, so that a consistent numerical treatment of GW propagation through a sheared39

environment, while simultaneously undergoing wave-wave interactions, seems to be more important. Once a numer-40

ical implementation of a corresponding theory were available, one could better investigate the relevance of GW-GW41

interactions in the atmosphere as such. So far it seems to be unclear whether the typical life time of an atmospheric42

GW, between emission from its source and its turbulent breaking, gives nonlinear triad interactions enough room to43

act. If so, consecutive wave-wave interactions, i.e. wave turbulence, could be an efficient mechanism for the nonlinear44

dissipation itself. Furthermore an interesting question in this context is how much triad interactions are affected by45
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wave modulation due to varying large-scale flows. Such modulation changes GWwavenumber and frequency so that46

a triad might be brought into and out of resonance. Hence strongly sheared environments might actually suppress47

nonlinear interactions, while such interactions, as described by wave-turbulence theory, might be more effective in48

less sheared locations of the atmosphere.49

With this motivation in mind, the work reported here builds on the study of Grimshaw (1988), who proposed a50

WKBJ theory for wave-wave interactions modulated by a slowly varying background flow. He considered the effect51

of the mean-flow shear on near-resonant triad interactions of internal gravity waves and outlined a possible approach52

to computing asymptotically the energy exchanges among the members of a triad that passes through resonance.53

The focus of the present study is the first (to our knowledge) implementation of such local resonant triad interactions54

into a numerical WKBJ model. In particular, we revisit the theory introduced by Grimshaw (1988) (Sections 2 to 4),55

simplify the equations to a quasi one dimensional setting (Section 5), and propose an interaction parameterization56

which allows for a straight forward application of the local interaction equations to the WKBJ modulation equations57

(Section 6). As an efficient tool for modeling the WKBJ equation system we use the spectral ray-tracing algorithm58

introduced by Muraschko et al. (2015) and expand it by a triad-interaction module. The resulting model is verified by59

constructing test cases of two interacting wave trains that generate a third wave train in the presence of a shear flow,60

and comparing the WKBJ simulations against wave-resolving simulations (Section 7). In general wave modulation by61

a variable background stratification or a sheared mean-flow are equally important in the atmosphere (cf. Achatz et al.,62

2017). However, we restrict the analysis to the case of Boussinesq dynamics with a constant background stratification63

and zero rotation for the sake of simplicity.64
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2 | FLOW REGIMES, NON-DIMENSIONALIZATION AND SCALING ASSUMP-65

TIONS66

We consider the non-rotating inviscid Boussinesq equations,67

Dtv = −+p + ez b (1)
Dt b = −N 2w (2)
0 = + · v (3)

where v = (u,v ,w )T , p , b , and N denote the velocity vector, the pressure, the buoyancy, and the buoyancy frequency68

associated to the background stratification, respectively. Note that we have scaled the pressure with the reference69

density so that it does not appear in the equations. For convenience we denote the horizontal velocity vector as70

u = (u,v , 0)T . The material derivative, Dt , is defined by Dt = ∂t + v · +. We non-dimensionalize the governing71

equations with the help of the scaling parameters summarized in Table 1 and some additional assumptions. Namely,72

(i) the horizontal and vertical scales are approximately equal73

H̃ ∼ L̃
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TABLE 1 Summary of all scaling parameters.

name symbol name symbol
temporal scale T̃ horizontal scale L̃

buoyancy frequency Ñ vertical scale H̃ = L̃

horizontal velocity Ũ = L̃
T̃

buoyancy B̃ = H̃ Ñ 2

vertical velocity W̃ = H̃
T̃

pressure P̃ = B̃ H̃

and (ii) the buoyancy and pressure are scaled such that the order O (1) represents the margin of static stability of74

internal gravity waves75

B̃ = L̃Ñ 2

P̃ = B̃ L̃ = L̃2Ñ 2

Note that in this scaling regime rotation is a higher order effect and is set to zero for simplicity. Thus, the non-76

dimensionalized governing equations for non-hydrostatic internal gravity waves in non-rotating Boussinesq dynamics77

are given by78

D t̂ v̂ = −+p̂ + eẑ b̂ (4)
D t̂ b̂ = −N̂ 2ŵ (5)
0 = + · v̂ (6)

Here, the hatted variables denote the non-dimensional variables. Unless indicated otherwise we will consider the79

non-dimensional variables without explicitly denoting the hat in the course of this study. Moreover we introduce a80

small parameter ε to scale the wave modulation and strength of the nonlinearities. To establish a consistent balance81

between modulation and nonlinearity we follow a WKBJ approach with weak wave amplitudes of order O (ε) and82
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thus seek solutions of the form83

y (x , t ) =
∞∑
k=0

εkY
(k )
0 (T1,T2,X1,X2) + <

∑
β

∞∑
n=1

εne iφβ (T2,X2 )/ε2Y (n )
β
(T1,T2,X1,X2) (7)

with y representing any of the fields v, p or b . The first term above is an expansion of the large-scale flow in terms of84

the scale-separation and wave-amplitude parameter, ε, while the second constitutes the wave field. The compressed85

coordinates, (Tn ,Xn ) , are defined by (Tn ,Xn ) = (εn t , εnx) . In doing so we introduce a three-scale system where86

the fast scales, (T0,X0) , correspond to the wave oscillations and the slow scales, (T2,X2) , correspond to the slow87

variation of themean flowwhich in turn causes a slowmodulation of thewave fields. The intermediate scales, (T1,X1) ,88

as explained below, are associatedwith the nonlinear wave-wave interaction. Choosing awave fieldwith leading order89

O (ε) we balance the strength of the nonlinear terms with the modulation (Grimshaw, 1988; Glebov et al., 2005). The90

summation over the index β represents the superposition of several wave trains in the solution. Moreover, for each91

wave train, we define the wave frequency, ωβ , and wave vector, kβ = (kβ , lβ ,mβ ) , as compressed temporal and spatial92

derivatives of the wave phase, φβ , so that93

ωβ (T2,X2) = −∂T2φβ kβ (T2,X2) = +2φβ (8)

where the subscript indicates the scale of the derivative, i.e.+2 = (∂X2 , ∂Y2 , ∂Z2 )T . We hence construct wave solutions94

with slowly varying amplitudes, wavenumbers and frequencies on the compressed scales (T2,X2) .95

It should be noted that for a superposition of wave trains with slowly varying amplitudes, the various harmonics96

may be separated and the equations may be written for the individual wave trains, only if the corresponding fre-97

quencies and wavenumbers are sufficiently separated. In particular the frequency difference of any two wave trains98

must be at least ωβ − ωγ ∼ O (1) . A rigorous treatment may be done with the aid of the weak asymptotic method as99
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introduced by Danilov (2001).100

Following similar arguments, the quadratic nonlinear terms are only important where the conditions for a resonant101

triad are satisfied or nearly so. The behavior is then analogous to the spectral passage through resonance of harmonic102

oscillators (Neu, 1983). In the case of an isolated triad the quadratic nonlinearities scale with an exponential phase103

factor e i∆φ/ε2 , where the phase difference is defined as ∆φ = ±φγ ±φδ −φβ with signs depending on the various triad104

combinations (cf. Grimshaw, 1988). In the case of an exact and static, i.e. time independent, resonance one finds105

∆φ ≡ 0 such that the phase factor becomes unity. In terms of wave vectors and frequencies that is,106

−∂T2 ∆φ = ±ωγ ± ωδ − ωβ = 0 (9)
+2 ∆φ = ±kγ ± kδ − kβ = 0 (10)

These are the the well-known resonance conditions of the classical interaction with constant stratification and zero107

background. If the resonance is, however, not exactly satisfied or the phase difference is a function of time and space108

due to wave modulation the phase factor enters the nonlinear interaction equations. For visualization of the local109

scaling we locally expand the phase difference, ∆φ, in the compressed time. In particular one finds110

∆φ

ε2
≈

(
∆φ

ε2

)
0

+ (∂T2∆φ)0T0 +
1

2
(∂2T2∆φ)0T

2
1 =

(
∆φ

ε2

)
0

− (∆ω)0T0 −
1

2
(∂T2∆ω)0T

2
1 (11)

Thus the typical exponential term, e i∆Φ/ε2 , due to quadratic nonlinearities is oscillating with the fast time scale,T0, in111

general but becomes a function of the intermediate time scale, T1, near resonance. The latter is the case as long as112

T1 ∼ O (1) and hence ∆ω = ∂∆φ/∂T2 ∼ O (ε) . Consequently the quadratic nonlinear terms are important only in an113

ε-neighborhood around resonance (Grimshaw, 1988). A similar argument can be employed in all spatial dimensions114

such that one may obtain an analogous condition for the wavenumbers, ∆k ∼ O (ε) .115
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We thus follow Grimshaw (1988) and Glebov et al. (2005), and consider two distinct regimes: the linear off-116

resonance solution, where the nonlinear triad terms can be neglected, and the weakly nonlinear near-resonance so-117

lution.118

3 | THE LINEAR OFF-RESONANT SOLUTION119

As long as the nonlinear terms do not come into play, the off-resonance solution is equivalent to the classical linear120

internal-gravity-wave theory, and all fields depend on the slow coordinates, (T2,X2) , only. Consequently the resulting121

equation hierarchy is equivalent to the well-known linear WKBJ theory for non-hydrostatic internal gravity waves122

(e.g. Achatz et al., 2010; Sutherland, 2010). Therefore we will only briefly review the most important results here,123

obtained after inserting (7) into Eqs. (4) to (6) and sorting in terms of powers of ε and the phase factor.124

3.1 | Leading Order Mean Flow Evolution125

In view of the assumptions of Boussinesq dynamics and weak wave amplitudes, the leading-order mean-flow velocity126

is purely horizontal and incompressible127

V
(0)
0 = U

(0)
0 0 = +2 · V (0)0 (12)

Furthermore it is governed by128

0 = (∂T2 +U
(0)
0 · +2)U (0)0 + +2P

(0)
0 − ezB (2)0 (13)
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Hence the leading-order horizontal mean-flow is independent of the wave field. Moreover, we find that B (0)0 = B (1)0 =129

0, and that the leading-order mean-flow pressure, P (0)0 , and the leading-order buoyancy, B (2)0 , are in hydrostatic bal-130

ance. We also obtainW (0)
0 =W (1)

0 =W (2)
0 =W (3)

0 = 0, and with this the evolution of the leading-order buoyancy is131

given by132

0 = (∂T2 +U
(0)
0 · +2)B (2)0 + N 2W

(4)
0 (14)

and therefore linked to the leading-order vertical mean wind,W (4)
0 .133

3.2 | Dispersion and Polarization Relations134

The internal gravity wave evolution is characterized by the following dispersion relation (e.g. Sutherland, 2010)135

ω̂2β =
N 2 (k 2

β
+ l 2

β
)

k 2
β
+ l 2

β
+m2

β

(15)

with the intrinsic frequency, ω̂β = ωβ − kβ ·U (0)0 . The polarization relations are136

Z
(1)
β

=
©­«U (1)β ,V (1)β

,W
(1)
β
,
B
(1)
β

N
, P
(1)
β

ª®¬
T

=W (1)
β

(
−
kβmβ

k 2
β
+ l 2

β

,−
lβmβ

k 2
β
+ l 2

β

, 1,
N

i ω̂β
,−

mβ ω̂β

k 2
β
+ l 2

β

)T
(16)

Note thatwe restrict our analysis to the internal gravitywave evolution and neglect the vorticalmode corresponding to137

the solution ω̂β = 0. The next-order wave equations reveal that the next-order mean-flow velocities vanish, i.e.U (1)0 ≡138

0.139
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3.3 | The Eikonal Equations140

We use the standard definition for the group velocities corresponding to the extrinsic and intrinsic frequencies141

+kβ ωβ = cg ,β +kβ ω̂β = ĉg ,β (17)

where+kβ denotes the derivatives with respect to the corresponding wavenumbers+kβ = (∂kβ , ∂lβ , ∂mβ )
T . Using the142

dispersion relation (Eq. 15) one may derive the evolution of the frequencies and wavenumbers - the eikonal equations.143

Specifically,144

(∂T2 + cg ,β · +2)ωβ = kβ · ∂T2U
(0)
0 (18)

(∂T2 + cg ,β · +2)kβ = −kβ (+2U (0)0 ) − lβ (+2V
(0)
0 ) (19)

where the explicit form of the intrinsic group velocity, ĉg ,β , and the extrinsic group velocity, cg ,β , are given by145

ĉg ,β =
ω̂3
β

N 2

mβ

k 2
β
+ l 2

β

(
kβmβ

k 2
β
+ l 2

β

,
lβmβ

k 2
β
+ l 2

β

,−1
)T

= cg ,β −U (0)0 (20)
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3.4 | Wave Action Conservation146

The linear wave action conservation in standard form is147

0 = ∂T2Aβ + +2 ·
(
cg ,βAβ

) (21)

where the wave action, Aβ , is defined as the ratio of the wave energy and corresponding intrinsic frequency, Aβ =148

Eβ / ω̂β , where149

Eβ =
1

2

N 2

ω̂2
β

|W (1)
β
|2 (22)

3.5 | Wave Impact on the Mean Flow and Leading-Order Vertical Winds150

Exploiting higher orders one may find that the second-order horizontal mean flow, U (2)0 , the next-order buoyancy,151

B
(3)
0 , and the leading-order vertical wind,W (4)

0 , are directly interacting with the wave field. Moreover, the leading-152

order vertical mean flow is connected to the leading-order buoyancy by Eq. (14) and therefore affects the hydrostatic153

relation. However, the leading-order vertical mean flow is three orders smaller compared to the leading-order wave154

amplitude,W (1)
β

. Also, there is no feedback onto the wave field. Thus the wave impact onto the mean flow will be155

treated as a higher order effect and will not be taken into account here, in accordance with the weak-wave-amplitude156

assumption.157
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4 | THE NONLINEAR NEAR-RESONANCE SOLUTION158

The near-resonance solution hinges on the quadratic triad terms and depends on the intermediate-scale coordinates159

(T1,X1) . Hence the wave amplitudes and second- as well as higher-order mean flow also vary on the intermediate160

scales. The leading-order mean-flow contributions are assumed to depend on the slow coordinates, (T2,X2) , only,161

as they correspond to the slowly varying background and wave modulation. We next derive the asymptotic hierarchy162

closely following Grimshaw (1988) and Achatz et al. (2010).163

4.1 | Leading-Order Mean-Flow Evolution164

Similarly to the off-resonance solution, the horizontal mean flow and pressure are of orderO (1) ,U (0)0 = U
(0)
0 (T2,X2)165

and P (0)0 = P
(0)
0 (T2,X2) . They represent the slowly varying background state and are therefore assumed to be166

dependent on the slow scales only. Also the leading-order mean-flow buoyancy, B (2)0 , and leading-order vertical167

wind,W (4)
0 , are of order O (ε2) and O (ε4) , respectively. We thus set B (2)0 = B (2)0 (T2,X2) .168

The leading-order incompressibility criterion requires that169

0 = +2 ·U (0)0 + +1 ·U (1)0 (23)

Averaging Eq. (23) over the intermediate scales, and requiring sub-linear growth of+1 ·U (1)0 so that 0 = +1 ·U (1)0

(T1,X1 ) ,170

we find that the leading and next-order mean-flow velocities, U (0)0 and U
(1)
0 , are incompressible171

0 = +2 ·U (0)0 0 = +1 ·U (1)0 (24)
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The evolution of the leading-order horizontal mean flow is given by172

0 = (∂T2 +U
(0)
0 · +2)U (0)0 + +2P

(0)
0 − ezB (2)0 + (∂T1 +U

(0)
0 · +1)U (1)0 + +1P

(1)
0 (25)

Again one may average Eq. (25) over the intermediate scales and obtains, via the sub-linear growth assumption, 0 =173

∂T1U
(1)
0

(T1,X1 ) as well as 0 = (U (0)0 · +1)U (1)0

(T1,X1 )
= +1P

(1)
0

(T1,X1 ) . One then finds that Eq. (25) can be separated174

so that175

0 = (∂T2 +U
(0)
0 · +2)U (0)0 + +2,hP

(0)
0 (26)

0 = (∂T1 +U
(0)
0 · +1)U (1)0 + +1,hP

(1)
0 (27)

0 = ∂Z2P
(0)
0 − ezB (2)0 (28)

0 = ∂Z1P
(1)
0 (29)

where Eq. (28) represents the hydrostatic balance of the mean flow to leading order. Thus the evolution of the leading-176

order mean flow is equivalent to the linear regime (Eq. 13). The leading-order mean-flow buoyancy evolves as177

0 = (∂T2 +U
(0)
0 · +2)B (2)0 + N 2W

(4)
0

(T1,X1 ) (30)

Leading-order mean-flow buoyancy and vertical mean wind are therefore linked similarly to the linear regime. Even178

though we may neglect the small leading-order vertical mean flow we will use this statement to obtain the formal179

leading-order matching conditions for the two regimes.180
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4.2 | Dispersion, Polarization, and Interaction Equations181

Due to the small wave amplitudes the dispersion relation as well as the polarization relations are retained from the182

linear evolution (cf. Eqs. 15 and 16). In contrast to the off-resonance solution, the wave amplitude and wave action183

equations comprise the nonlinear triad terms. Projecting the next-orderwave evolution equations onto the normalized184

polarization relations (cf. Achatz et al., 2010) one arrives at the wave amplitude equation,185

0 = (∂T1 + cg ,β · +1)W (1)
β

+ i (U (1)0 · kβ )W (1)
β

+
∑
γ,δ

e i (φγ+φδ−φβ )/ε
2
A+βγδW

(1)
γ W

(1)
δ

+
∑
γ,δ

e i (−φγ−φδ−φβ )/ε
2
A−βγδW

(1)
γ

∗
W
(1)
δ

∗

+
∑
γ,δ

e i (φγ−φδ−φβ )/ε
2
A−βγδW

(1)
γ W

(1)
δ

∗
+

∑
γ,δ

e i (−φγ+φδ−φβ )/ε
2
A+βγδW

(1)
γ

∗
W
(1)
δ

(31)

with the interaction coefficients (cf. McEwan and Plumb, 1977)186

A±βγδ = ±i
1

4

ω̂2
β

N 2

(
mδ −mγ

kδkγ + lδ lγ

k 2γ + l
2
γ

) [
mβmδ (kβ kδ + lβ lδ )
(k 2
β
+ l 2

β
) (k 2

δ
+ l 2

δ
)
+ 1 ± N 2

ω̂δ ω̂β

]
(32)

The wave action evolution then follows as187

0 = ∂T1Aβ + +1 ·
(
cg ,βAβ

)
+T (1)

β
(33)

with the wave action, Aβ , being defined analogous to the linear solution (cf. Eq. 22). Here, the interaction term,T (1)
β

,188
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is given by189

T
(1)
β

=
∑
γ,δ

e i (φγ+φδ−φβ )/ε
2 1

2

N 2

ω̂3
β

A+βγδW
(1)
γ W

(1)
δ
W
(1)
β

∗

+
∑
γ,δ

e i (−φγ−φδ−φβ )/ε
2 1

2

N 2

ω̂3
β

A−βγδW
(1)
γ

∗
W
(1)
δ

∗
W
(1)
β

∗

+
∑
γ,δ

e i (φγ−φδ−φβ )/ε
2 1

2

N 2

ω̂3
β

A−βγδW
(1)
γ W

(1)
δ

∗
W
(1)
β

∗

+
∑
γ,δ

e i (−φγ+φδ−φβ )/ε
2 1

2

N 2

ω̂3
β

A+βγδW
(1)
γ

∗
W
(1)
δ
W
(1)
β

∗ (34)

Thus in the near-resonance solution wave action is conserved up to the exchange of energy between themodes. Note190

that due to the cubic nonlinearities, that isT (1)
β
∼W (1)

γ W
(1)
δ
W
(1)
β

∗ (and complex conjugates), Eq. (33) is ill posed when191

the amplitude,W (1)
β

, is initially zero (cf. Eq. 22). Instead it is necessary to solve the amplitude equation (Eq. 31) near192

resonance.193

4.3 | Energy Conservation194

Naturally the linear solution comprises the wave-action conservation (Eq. 21). Near resonance, while the wave action195

of each wave train is not conserved, wave triads exchange energy such that the sum of all wave energies is conserved.196

Therefore one may assess the total energy balance by considering an individual triad with resonance conditions197

k1 = k2 + k3 (35)
ω̂1 = ω̂2 + ω̂3 (36)
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The evolution of the corresponding wave energies is then given by the three coupled equations198

0 = ∂T1E1 + +1 ·
(
cg ,1E1

)
+<

e
i (φ2+φ3−φ1 )/ε2 1

2

N 2

ω̂21
(A+123 + A

+
132)W

(1)
1

∗
W
(1)
2 W

(1)
3

 (37)

0 = ∂T1E2 + +1 ·
(
cg ,2E2

)
−<

e
i (φ2+φ3−φ1 )/ε2 1

2

N 2

ω̂22
(A−213 + A

+
231)W

(1)
1

∗
W
(1)
2 W

(1)
3

 (38)

0 = ∂T1E3 + +1 ·
(
cg ,3E3

)
−<

e
i (φ2+φ3−φ1 )/ε2 1

2

N 2

ω̂23
(A−312 + A

+
321)W

(1)
1

∗
W
(1)
2 W

(1)
3

 (39)

When summing the contributions of all members of the triad one gets199

∂T1 (E ) = ∂T1 (E1 + E2 + E3)

= −
[
+1 ·

(
cg ,1E1

)
+ +1 ·

(
cg ,2E2

)
+ +1 ·

(
cg ,3E3

) ]

−<

i Ae
i (φ2+φ3−φ1 )/ε2W (1)

1

∗
W
(1)
2 W

(1)
3

 (40)

where A ∈ Ò is equal to200

A = −i 1
2

[
N 2

ω̂21
(A+123 + A

+
132) −

N 2

ω̂22
(A−213 + A

+
231) −

N 2

ω̂23
(A−312 + A

+
321)

]
(41)

Here we note again that all wavenumbers and intrinsic frequencies depend on the slow time and spatial scales201

only. Thus in an ε-neighborhood around exact resonance the resonance conditions (Eqs. 35 and 36) remain valid.202
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Applying these conditions to Eq. (41) yields203

A = 0 (42)

Thus the wave energy is conserved during the interaction of any triad. For any wave train β that is not a member of204

a resonant triad the interaction terms vanish due to the asymptotic scale separation. Hence we have conservation of205

the sum of the wave energies over all packets near resonance and write accordingly206

0 =
∑
β

[
∂T1Eβ + +1 ·

(
cg ,βEβ

) ] (43)

4.4 | Wave Impact During Interactions207

While the evolution ofU (1)0 on the intermediate coordinates, (T1,X1) , is independent of the waves, it is influenced by208

the gravity wave momentum flux convergences on the large-scale coordinates, (T2,X2) (not shown). However, since209

the near-resonance solution is valid in an ε-neighborhood in T2 around the exact resonance, the slow change of the210

next-order mean flow is of the order O (ε2) with respect to the leading order. Also the term describing the impact of211

U
(1)
0 on the wave fields in Eq. (31), i (U (1)0 ·kβ )W (1)

β
, may be interpreted as a next-order correction to the dispersion212

relation. We therefore neglect the next-order horizontal mean flow, U (1)0 .213

Similarly, the leading-order vertical mean flow,W (4)
0 , is driven by gravity wave fluxes. Moreover it is related to214

the leading-order buoyancy similar to the off-resonance solution. We thus conclude that the vertical mean flow is215

generally dependent of the waves near resonance. However, we neglect this effect since there is no feedback on216

the wave field and the largest non-zero vertical mean flow is three orders smaller compared to the assumed wave217

amplitude.218
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4.5 | Matching the Solution Regimes219

The prognostic and diagnostic equations for the regimes near and far from resonance were summarized above. Nat-220

urally we require that in the limit, ε → 0, the mean flow and wave amplitudes of the same hierarchy must match at221

the regime transition. To determine the regimes of validity of the solutions one may consider the validity of the phase222

expansions. In particular, the near-resonance solution is valid in an ε-neighborhood around the exact resonance on223

the slow scales, (T2,X2) ∈ O (ε) . Hence, we seek conditions so that the off-resonance solution matches the near-224

resonant solution in the limit as the resonance manifold is approached. This corresponds to the limit (T1,X1) → ±∞225

(cf. Glebov et al., 2005).226

Mean Flow227

The leading horizontal mean flow in both solutions are non divergent (Eqs. 12 and 23) and hydrostatic (Eqs. 13 and 28).228

Moreover the leading-order buoyancy is independent of the wave field in the linear regime (Eq. 14). The evolution in229

the near-resonance solution, averaged over (T1,X1) , is given by Eq. (30). Consequently the only matching condition230

for the leading-order mean flow is given by231

W
(4)
0 −−−−−−−−−−−−→

(T1,X1 )→±∞
W
(4)
0

(T1,X1 ) (44)

Wave Amplitudes232

By assumption the wave properties, i.e. ωβ and kβ , depend on the large-scale coordinates (T2,X2) and consequently233

obey the eikonal equations (Eqs. 18 and 19) in both solutions. Moreover, the leading-orderwaves follow the dispersion234

and polarization relations (Eqs. 15 and 16). While wave action is conserved off-resonance (Eq. 21), it is subject to235

nonlinear exchange on the intermediate coordinates in the near-resonance solution (Eq. 33). To find the matching236

conditions between the two solutions we thus seek the limit of the near-resonance solution for (T1,X1) → ±∞. First237



20 G. S. Voelker et al.
we note that the interaction term scales with exponential functions of phase differences238

T
(1)
β
∼ e∆φ/ε2 (45)

By assumption one has −∂T2∆φ = ∆ω ∼ O (1) and +2∆φ = ∆k ∼ O (1) in the limit (T1,X1) → ±∞. Thus the nonlinear239

forcing term can be expanded to leading order240

e∆φ/ε
2 ≈ e i (∆k·X0−∆ωT0 ) (46)

This term is dependent on the short-scale coordinates (T0,X0) , and must therefore vanish after averaging over the241

large scales (cf. Danilov, 2001). Thus, in the limit (T1,X1) → ±∞, the wave action equation becomes a conservation242

law similar to the linear solution (Eq. 21).243

0 = ∂T1Aβ + +1 ·
(
cg ,βAβ

) (47)

We conclude that in the limit (T1,X1) → ±∞ the wave amplitudes are not driven by interaction on the intermediate244

scales. The formal matching condition is given by245

V
(1)
β

(T1,X1 )
−−−−−−−−−−−−→
(T1,X1 )→±∞

V
(1)
β

(48)
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5 | SUMMARY OF DIMENSIONAL EQUATIONS IN 1.5D246

For the application of the above-derived equations we revert to dimensional variables. Moreover we assume homo-247

geneity of mean flow and wave amplitudes in the horizontal direction such that the equations become effectively248

one dimensional (cf. Muraschko et al., 2015). Finally we also assume that the horizontal mean-flow velocity,U (0)0 , as249

well as the horizontal wave vectors, khβ , have an x -component only. Under these assumptions the incompressible,250

constant, and hydrostatic mean flow satisfies in both regimes251

0 = w0 0 = ∂xu0 (49)
0 = ∂tu0 0 = ∂z p0 − b0 (50)

The waves are governed by the eikonal equations (Eqs. 18 and 19), the dispersion and polarization relations (Eqs. 15252

and 16), and the wave action or wave amplitude equations (Eqs. 21, 31, and 33). The dimensional eikonal equations253

are254

(∂t + cg ,z ,β ∂z )ωβ = 0 (51)
(∂t + cg ,z ,β ∂z )kβ = −ez kβ ∂zu0 (52)

with the dispersion relation255

ω̂2β =
N 2k 2

β

k 2
β
+m2

β

(53)
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and the group velocities256

ĉg ,β =
ω̂3
β

N 2

mβ

k 2
β

(
kβmβ

k 2
β

, 0,−1
)T

= cg ,β − u0 (54)

The polarization relations are257

Zβ =
(
uβ ,vβ ,wβ ,

bβ

N
, pβ

)T
= wβ

(
−
mβ

kβ
, 0, 1,

N

i ω̂β
,−
mβ ω̂β

k 2
β

)T
(55)

While wave action conservation holds for the linear off-resonant solution, i.e.258

0 = ∂tAβ + ∂z (cg ,z ,βAβ ) (56)

the near-resonance regime requires additional interaction terms such that259

0 = ∂tAβ + ∂z (cg ,z ,βAβ )

+
1

2

N 2

ω̂3
β

<

∑
γ,δ

e i (ϕγ+ϕδ−ϕβ )A+βγδw
∗
βwγwδ +

∑
γ,δ

e i (−ϕγ−ϕδ−ϕβ )A−βγδw
∗
βw
∗
γw
∗
δ

+
∑
γ,δ

e i (ϕγ−ϕδ−ϕβ )A−βγδw
∗
βwγw

∗
δ +

∑
γ,δ

e i (−ϕγ+ϕδ−ϕβ )A+βγδw
∗
βw
∗
γwδ

 (57)
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where the interaction coefficients are given by260

A±βγδ = ±i
1

4

ω̂2
β

N 2

(
mδ −mγ

kδ
kγ

) [
mβmδ

kβ kδ
+ 1 ± N 2

ω̂δ ω̂β

]
(58)

Equation (57) is, however, ill posed when the wave amplitude, wβ , is zero at an initial time. Instead we solve the261

complex wave amplitude equation given by262

0 = (∂t + cg ,z ,β ∂z )wβ

+
∑
γ,δ

e i (ϕγ+ϕδ−ϕβ )A+βγδwγwδ +
∑
γ,δ

e i (−ϕγ−ϕδ−ϕβ )A−βγδw
∗
γw
∗
δ

+
∑
γ,δ

e i (ϕγ−ϕδ−ϕβ )A−βγδwγw
∗
δ +

∑
γ,δ

e i (−ϕγ+ϕδ−ϕβ )A+βγδw
∗
γwδ (59)

where the second-order horizontal mean flow is neglected. The evolution of the phase functions, φβ , along the wave263

characteristics is given by the definition of the wavenumber and frequency264

(∂t + cg ,z ,β ∂z )ϕβ = (−ωβ + cg ,z ,βmβ ) (60)

where we have rescaled the phase function such that ϕβ = ε−2φβ . Hence the small parameter ε does not appear265

explicitly in the equations.266

Eqs. (51), (52), and (56) are equivalent to Grimshaw’s modulation equations (Grimshaw, 1977, 1988) for weakly267

nonlinear non-hydrostatic internal gravity waves. Here, Eq. (57) replaces Eq. (56) where near resonant triad inter-268

actions are relevant and the nonlinearities come into play. This system may be employed numerically to estimate269
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wave-wave interactions in the context of WKBJ ray-tracing simulations as discussed below.270

6 | A SEMI-EMPIRICAL PARAMETERIZATION FOR THE INTERACTION EQUA-271

TIONS272

In the previous sectionswe have presented aweakly nonlinear multi-waveWKBJ theory based on the non-hydrostatic273

Boussinesq equations. The resulting modulation equations are summarized in Eqs. (49) to (59) assuming horizontal274

homogeneity so that they are effectively one-dimensional. These equations may be solved numerically using several275

approaches.276

Phase expansion around resonance277

Following Grimshaw (1988), near themanifold of exact resonance, onemay expand the phase functions,φβ , to second278

order in time and space and project the resulting interaction equations onto a space-time direction which is perpen-279

dicular to the resonance manifold in z -t -space. In the limit ε → 0 the exchange of energy among the members of a280

triad implied by the near-resonance solution then appears as a “jump” across the resonance manifold. However, in281

implementing this approach we encountered certain difficulties. In particular the projection onto the cross-resonance282

coordinate leads to singularities and secular growth in the interaction equations where the space-time trajectory of283

any triad member is parallel to the resonance manifold. Also, singularities may occur where the second order trunca-284

tion of the phase expansion becomes invalid and the equations have to be rescaled. Since both these issues do arise285

at rather common settings of wavenumbers and background shear strengths, we do not follow this approach.286

Equivalent window method287

We observe that the exponential term in the interaction equations (Eq. 59) acts as an integration window limiting the288

interaction, depending on the spectral deviation from resonance. We thus suggest to find a spectral window function289

with an equivalent width. In such a case the interaction equations may be solved as if in exact resonance but limited290
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in terms of spectral deviation from resonance. This approach is explained below.291

The asymptotic theory presented earlier comprises two scaling regimes. While the off-resonance solution follows292

linear dynamics on slow time and spatial scales, with corresponding coordinates, (T2,X2) , the near-resonance solution293

is characterized by the interaction ofGWtriads on intermediate time and spatial scales, with a dependence on (T1,X1) .294

In both cases the background is assumed to vary on the slow scales only. Thus near resonance and in the asymptotic295

limit ε → 0 the characteristic length scales of both the wave train amplitudes and the background shear are virtually296

infinite with respect to the interaction (i.e. intermediate) scales. Motivated by this asymptotic limit we consider gravity297

waves in a constant background shear ∂zu0 , 0 with infinite extent in the vertical. Similarly, the slowly varying298

wavenumbers, mβ , are assumed to be homogeneous in the vertical such that299

∂zmβ = 0 (61)

Consequently, the local tendency of the wave frequencies can be expressed as300

∂tωβ = −cg ,z ,β ∂zωβ

= −cg ,z ,β
(
cg ,z ,β ∂zmβ + kβ ∂zu0

)
= −kβ cg ,z ,β ∂zu0 (62)

where we have used the eikonal equations (Eqs. 51 and 52), the fact that the wave frequencies and wavenumbers301

are related by −∂zωβ = ∂z ∂tϕβ = ∂tmβ , as well as the above assumption ∂zmβ = 0. Expanding the phase difference302
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locally in time one finds303

∆ϕ = (∆ϕ)0 − (∆ω)0 (t − t0) −
1

2
(∂t∆ω)0 (t − t0)2 (63)

where the linear term vanishes when expanding around exact resonance. Moreover in resonance one has (∆k )0 = 0.304

Also, without loss of generality we set (∆φ)0 ≡ 0. Finally the phase difference becomes approximately305

∆ϕ = − 1
2
(∂t∆ω)0 (t − t0)2 = −

1

2
(∂t∆ω̂)0 (t − t0)2 (64)

For an explicit triad the interaction equations (Eq. 59) thus are306

(∂t + cg ,z ,1∂z )w1 = A1w2w3e i∆ϕ (65)
(∂t + cg ,z ,2∂z )w2 = A2w1w ∗3 e

−i∆ϕ (66)
(∂t + cg ,z ,3∂z )w3 = A3w1w ∗2 e

−i∆ϕ (67)

where the phase difference is ∆ϕ = ϕ2 +ϕ3 −ϕ1 and the interaction coefficients are given by307

A1 = −(A+123 + A
+
132) (68)

A2 = −(A−213 + A
+
231) (69)

A3 = −(A−312 + A
+
321) (70)
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Inserting the local phase evolution (Eq. 64) one finds that the right hand sides in Eqs. (65) to (67) are independent of the308

vertical coordinate, z . Thus the homogeneity assumption can be repeated for the wave amplitudes,wβ . Consequently309

the vertical gradients vanish at any time and height, ∂zwβ ≡ 0. Hence the system Eqs. (65) to (67) simplifies to310

∂tw1 = A1w2w3 e
−i 12 (∂t ∆ω̂)0 (t−t0 )

2 (71)
∂tw2 = A2w1w

∗
3 e

i 12 (∂t ∆ω̂)0 (t−t0 )
2 (72)

∂tw3 = A3w1w
∗
2 e

i 12 (∂t ∆ω̂)0 (t−t0 )
2 (73)

where the dephasing, 12 (∂t∆ω̂)0, can be expressed in terms of the wavenumbers using Eq. (62)311

(∂t∆ω̂)0 = −(k2cg ,z ,2 + k3cg ,z ,3 − k1cg ,z ,1)0 ∂zu0 (74)

This system of equations is equivalent to the evolution of plane waves in a background shear flow with infinite extent.312

This image may be useful to understand the asymptotic, i.e. local, passage through resonance.313

For comparison, we set up a simplified system making use of the fact that in a small neighborhood around exact314

resonance the resonance conditions are satisfied approximately. To balance the limited width of validity of approxi-315

mately exact resonance one may introduce a window function G (t − t0) of the form316

G (t − t0) = θ (t † − |t − t0 |) (75)

where θ represents the Heaviside function. This represents a symmetric box with value G = 1 around the resonance317
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time t0, and value G = 0 elsewhere. A simplified system then reads318

∂tw1 = A1w2w3G (t − t0) (76)
∂tw2 = A2w1w

∗
3G (t − t0) (77)

∂tw3 = A3w1w
∗
2G (t − t0) (78)

To evaluateG (t − t0) one may compare Eqs. (76) to (78) to Eqs. (71) to (73) with a quadratic dephasing near resonance319

as described above. Integrating the exponential term over the time corresponding to a local asymptotic expansion,320

i.e. from −∞ to ∞, yields the Fresnel integral321

IF =
∞∫

−∞

e i
1
2 (∂t ∆ω̂)0 (t−t0 )

2
d t =

√
i2π

(∂t∆ω̂)0
(79)

Equating the absolute value of the real part of IF with the integral over the window, G (t − t0) , yields322

IG =
t0+t

†∫
t0−t †

d t = 2t † =

√
2π

| (∂t∆ω)0 |
= |IF | (80)

giving a first-order estimate for the window half width, t †. In order to practically apply this estimate one would,323

however, need to solve for the exact resonancemanifold and consecutively reconstruct the effective interaction region324

before integrating the model. We therefore evaluate t † in terms of an effective spectral resonance deviation which325

can be readily diagnosed during run time of the model integration. In particular we define a normalized resonance326
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function R such that327

R (t ) = ω̂2 + ω̂3 − ω̂1
ω̂2 + ω̂3

=
∆ω̂

ω̂2 + ω̂3
=
(∂t∆ω̂)0
ω̂2 + ω̂3

(t − t0) (81)

Thus the resonance function at the boundaries of the interaction window G (t − t0) is given by328

|R (t0 + t †) | = |R (t0 − t †) | =
√
2π | (∂t∆ω̂)0 |
2(ω̂2 + ω̂3)

=

√
2π | (k2cg ,z ,2 + k3cg ,z ,3 − k1cg ,z ,1)∂zu0 |

2(ω̂2 + ω̂3)
(82)

Equation (82) directly gives a leading-order estimate for the spectral resonance width. This estimate covers the329

dependencies on the wavenumbers and background shear but may need tuning for a global parameterization. We330

therefore introduce a tuning parameter, κ , and set the spectral window331

G (t ) = G̃ (R (t )) = θ (R † − |R (t ) |) (83)

where θ denotes the Heaviside step function and R † = κ |R (t0 ± t †) |. The parameter κ may then be optimized for332

best agreement between simulation results of Eqs. (71) to (73) and Eqs. (76) to (78). This formulation now allows for333

simulations that locally diagnose resonance deviations and enable interactions where necessary without solving for334

exact resonance manifolds.335

Note that the described procedure approximates the interaction equations Eqs. (65) to (67) such that the total336

changes of the magnitude of the complex wave amplitudes, wβ , are recovered. However, the parametrization intro-337

duces a modification of the phases of the complex wave amplitudes which are then bound to differ from the full338

solution. Analyzing interaction systems with constant phase difference Bustamante and Kartashova (2009) find that339
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this may modify the evolution of the wave amplitudes in terms of both energy exchange rates and maximum energy340

exchange. While the effective resonance interval, R †, is chosen such that the total energy exchange is recovered341

deviations in the exact evolution between the full and the parametrized solution may occur.342

6.1 | Estimating the Tuning Parameter κ343

In order to estimate the tuning parameter, κ , we compare numerical results of the reference system given by Eqs. (71)344

to (73) and the system Eqs. (76) to (78) with Eq. (83) for a range of specific resonances. With a length scale L̃ = 5 km/2π345

we consider triads with non-dimensional horizontal wavenumbers k̂1 = 0.2 and k̂2 = k̂3 = 0.1. While m̂1 and m̂3 follow346

from the resonance conditions m̂2 + m̂3 − m̂1 = 0 and ω̂2 + ω̂3 − ω̂1 = 0, the non-dimensional vertical wavenumber347

of the second GW is chosen from the interval m̂2 ∈ [0.56, 10]. Here the lower boundary corresponds to the lowest348

wavenumber at which Eqs. (71) to (73) can be solved while avoiding passage through a second distinct resonance. The349

upper boundary is chosen in accordance with the asymptotic assumption m̂2 = O (1) . We thus consider dimensionful350

horizontal wavelengths of the order ∼ 10 km and vertical wavelengths of the order ∼ 1 km. In general atmospheric351

GWs cover a broad range of spatial scales (Callies et al., 2014). Here we choose rather small wavelengths for GWs in352

order to be consistent with the simplification of non-rotating Boussinesq dynamics. A critical reader will notice that353

most of the cases considered imply |mβ /kβ | � 1, not quite consistent with the original non-dimensionalization of the354

Boussinesq equations, where equal horizontal and vertical length scales have been assumed. This is, however, only355

an apparent violation of the assumptions. Redoing the scale-asymptotic analysis with anisotropic scaling leads to a356

limiting form of the presented formulae with k 2
β
<< m2

β
in Eqs. (53) and (58). All other results stay intact. However,357

while our formulation is quite general we present results for relatively anisotropic test cases so that the interaction358

coefficients (Eq. 58) are larger and strong energy exchanges may be observed.359

As for wave and shear amplitudes, in accordance with the weakly nonlinear theory, the initial amplitude of the360

wave trains relative to the corresponding static instability criterion are varied between 10−3 and 10−1. The chosen361

background shear strength is equal to a value corresponding to the maximum shear in our reference simulations362

which are introduced in the later part of this study. In particular ∂zu = 2π/40, 000 s−1 ≈ 1.6 × 10−4 s−1. This value363
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corresponds to relatively weak sheared background winds in the atmosphere where jet strengths U = O (10ms−1)364

and a tropopause height H = O (10 km) imply ∂zu = O (10−3 s−1) . However, as shown in the discussion, there are large365

areas, for instance in the mid-latitudes and polar regions in spring and autumn after the break down of the polar night366

jet, that are well represented by a shear strength ∂zu = O (10−4 s−1) . Moreover, it allows for a strong wave modulation367

(order O (1)) on time scales approximately two orders of magnitude longer than a typical wave period (∼ 103 s). The368

chosen background shear is therefore consistent with both the scaling assumptions of the asymptotic theory as well369

as observed atmospheric conditions. Stronger shears will be discussed below as well, and it will be shown there that370

the associated wave modulation by the mean flow partially suppresses the non-linear interactions.371

Optimal values for the parameter κ are then found for 189 central wavenumbers m2 and 21 different amplitudes372

within the given intervals. In particular we use a Nelder-Mead procedure to find the least square deviation between373

the the two model results (Nelder and Mead, 1965). We find that the optimal value for κ is approximately constant374

for all central wavenumbers and in the limit of small amplitudes (Fig. 1). For amplitudes near 10−1 the optimal tuning375

parameter decreases with minimum values as low as 0.04. In this regime the characteristic time scales of the exactly376

resonant system are comparable to the time scales given by the dephasing (cf. Eq. 74). This causes a potential sys-377

tematic bias to this method at large amplitudes. The median of all optimal values for 189x21 evaluations, spanning the378

intervals m̂2 ∈ [0.56, 10] and α ∈ [10−3, 10−1 ], is equal to κ = 0.9969 ≈ 1.379

The approximately constant κ shows that the form of the effective spectral interaction threshold, R † (Eq. 82),380

covers the dependency on the wavenumbers with high accuracy. This strongly suggests that a globally constant κ381

may describe the spectral interaction threshold across a wide range of wavenumber scales. Moreover the constant382

optimal tuning parameter, κ ≈ 1, for small amplitudes suggests that the derived effective spectral interaction threshold,383

R †, in combination with a global tuning parameter, κ , are appropriate to parameterize the spectral passage through a384

resonance across all scales covered by the asymptotic theory. However, for amplitudes approaching the limit of static385

instability at O (1) the parameterization, understandably, may not be as accurate.386

For a qualitative error estimate we visualize the difference between numerical solutions to the simplified system387

(Eqs. 71 to 73) and the parametrized system (Eqs. 76 to 78) in Fig. 2. Here we distinguish wave amplitudes solving388

the simplified system, w (s )
j

, and wave amplitudes solving the parameterized system, w (p )
j

. The parameters for the389
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F IGURE 1 Optimal tuning parameter κ dependent on the central resonance triad and wave amplitudes. The
median has a value of κ = 0.9969 ≈ 1.

shown simulation are ∂zu = 2π/40, 000 s−1, k̂1 = 0.2, k̂2 = k̂3 = 0.1, m̂2 = 5, κ = 1, and α = 10−2. Considering390

the trajectories of the solutions on the complex plane (cf. Fig. 2a - c) it is evident that the parametrized solution (blue)391

cannot reproduce the evolution of the phases of the complex wave amplitudes of the simplified solution (red). Despite392

this obvious shortcoming the parametrization predicts the total change of the absolute value of the wave amplitudes393

with small errors (cf. Fig. 2d - f).394

To highlight the quantitative error we compute solutions to both systems for the previously used parameter395

space and evaluate the ratios of the resulting energies after the interaction. In particular we choose relative wave396

amplitudes α ∈ [10−3, 10−1 ], central wavenumbers m̂2 ∈ [0.56, 10], a background shear ∂zu = 2π/40, 000 s−1, and397

a parametrization constant κ ≡ 1. As a diagnostic we calculate the ratio of the wave energies of the two solutions398

after the interaction for each triad member, E (p )
j
/E (s )

j
= |w (p )

j
|2 / |w (s )

j
|2. We find that the deviation is generally399

smaller than 8% with a mean and median value < 2% for all three triad members over the whole tested parameter400

space (Fig. 3). Systematic biases arise at initial relative amplitudes α > 0.04. Here the energy transferred to the401
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F IGURE 2 Example solutions to the simplified system (Eqs. 71 to 73, depicted in red) and the parametrized
system (Eqs. 76 to 78, shown in blue) for ∂zu = 2π/40, 000 s−1, k̂1 = 0.2, k̂2 = k̂3 = 0.1, m̂2 = 5, κ = 1, and α = 10−2.The panels (a) through (c) show the trajectories of the solutions on the complex plane. Black arcs represent the level
of constant magnitude corresponding to the parametrized amplitude, w (p )

j
, after the interaction. Panels (d) through

(f) show the time evolution of the absolute value of the amplitudes, w (p )
j

and w (s )
j

, relative to their initial value. Each
column corresponds to one of the three triad members.
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F IGURE 3 Ratios of wave energies corresponding of the solutions the simplified system (Eqs. 71 to 73) and the
parametrized system (76 to 78) after the interaction. Here, the background shear is set to ∂zu = 2π/40, 000 s−1, andthe parametrization constant is κ ≡ 1. Panel (a), (b), and (c) are associated to j = 1, j = 2, and j = 3, correspondingly.

generated triad member may be either under- or overestimated (Fig. 3a). Strongest deviations occur near α = 0.1402

where the parametrization leads to overestimates of the transferred energy while overestimating and underestimating403

the energy of either one of the generating triad members (Fig. 3a-c).404

7 | VERIFICATION WITH IDEALIZED TEST CASES405

7.1 | The Test Case Definition406

As a generic test case we use the generation of a third wave train through the resonant interaction of two given407

wave trains. A predefined sinusoidal background shear modulates the given wave trains to enable spectral passage408

through resonance. In particular we use a periodic domain of height H = 40 km (so that H /L̃ = 16π) and a background409

shear flow defined as u = u0 sin(2πz/H ) . In the tests below, u0 ∈ [0, 1ms−1 ]. The maximum shear is therefore410

approximately ∂zu0 ≈ 1.6 × 10−4 s−1. Based on this mean-flow profile we derive initial conditions for the wave trains411

such that the modulated wave-wave interaction takes place near the center of the domain. Note that the vertical scale412

H is much larger than the considered vertical wavelengths. Thus this structure of the mean-flow is compliant with413

both the periodic boundary conditions of the simulations and the slow modulation assumption. As initial conditions414
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for the given wave trains we consider Gaussian wave packets with vertical velocities415

wj = wj ,0 e
−
(z−zj )2

2σ2 cos(m j z ) (84)

The center of the wave trains, z j , and initial wavenumbers, m j , are chosen such that the wave trains are in resonance416

and overlap in the center of the domain after approximately half the integration time, as described below. The latter417

is chosen such that at the final time the energy exchange is negligible. The initial wave amplitudes are taken to be a418

given fraction, α , with respect to the static instability criterion (e.g. Achatz et al., 2017). In particular419

wj ,0 = α
ω (k j ,m j )

m j
(85)

All other initial fields are determined through the polarization relations (Eq. 55). Wave amplitudes considered below420

are in the range α ∈ [10−2, 10−0.4 ]. The initial packet width is constant with σ = 2 km, the horizontal wavelengths421

are set to λ2 = λ3 = 50 km such that λ1 = 25 km. These wavelengths correspond to non-dimensional wavenumbers422

k̂1 = 0.2 and k̂2 = k̂3 = 0.1. They are chosen such that the interaction coefficients (Eq. 32) are large enough for the423

resonance conditions to permit a wide range of wavenumbers m̂2 for exact resonances. Validations against cases with424

larger horizontal wavenumbers have been done as well (not shown), with qualitatively similar results to those reported425

here.426

7.2 | WKBJ validation against wave resolving simulations427

For qualitative and quantitative comparisons we run wave-resolving simulations as well as WKBJ ray-tracing simula-428

tions with equivalent initial conditions. In particular we employ, in Boussinesq mode, the code PincFloit with a second-429
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order MUSCL scheme utilizing an MC flux limiter (Rieper et al., 2013b; Wilhelm et al., 2018). The time integration is430

realized through a third-order Runge-Kutta scheme. To circumvent numerical attenuation, it is run with a resolution431

that permits for at least 12 points per wavelength in the initial conditions. For comparison we use the spectral WKBJ432

ray-tracing code introduced by Muraschko et al. (2015), augmented by an interaction module corresponding to the433

parameterized solution method presented in Section 6. A brief technical description of the implementation can be434

found in the appendix. The wave-resolving simulations are carried out in two dimensions with a periodic horizontal435

domain. In particular we set the domain such that it has a horizontal extent equal to a multiple of the horizontal436

wavelengths of the wave, and we employ periodic boundary conditions.437

We choose three distinct resonances with different resonant wavenumber triads around which we construct438

the simulation. In particular the central triads are characterized by the non-dimensional vertical wavenumbers, m̂β ,439

as summarized in Table 2. To define appropriate initial conditions for the test cases, the ray tracer was employed440

with the interaction scheme disabled and using a negative time step, thus integrating backward in time. The initial441

conditions were chosen to be Gaussian wave packets in exact resonance, the reverse integration time was set to442

half the desired model integration time for the corresponding test case. The maximum amplitude position and mean443

wavenumber of the resulting wave trains were used to set zβ and mβ in the initial conditions for the test cases (cf. Eq.444

84). The initial amplitudes are set to α = 0.1 where the background shear is varied and the background velocity is set445

to u0 = 1ms−1 where the amplitudes are varied. In general the amplitudes do not only vary during triadic interactions446

but also elsewhere due to the wave modulation and the wave action conservation (Eqs. 21 and 22). Thus the initial447

amplitudes are not equivalent to the amplitude at the transition to the near-resonance regime. However, in cases of448

small background velocities, u0 ≤ 1ms−1, the effect is small and the initial amplitude remains a good estimate as to449

how strong the waves are relative to static instability near resonance. For stronger background velocities, where the450

modulation effect dominates the experiments, the amplitude modulation influences the strength of the interactions.451

It is therefore balanced by modifying the initial amplitude such that the amplitude are comparable in the interaction452

regime.453

For the analysis and visualization the fields from the wave-resolving simulations are first Fourier-transformed in454

both spatial directions, then separated by wavenumber and projected onto the polarization relations (Eq. 55). After455
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TABLE 2 Resonant vertical wavenumber triads used for the simulations. The corresponding horizontal
wavenumbers are (k̂1, k̂2, k̂3) = (0.2, 0.1, 0.1) . By convention the first wavenumber corresponds to the generated
wave train such that k̂1 = k̂2 + k̂3 and m̂1 = m̂2 + m̂3.

m̂1 m̂2 m̂3

2.93 5 -2.07
5.86 10 -4.14
8.79 15 -6.21

this filtering of each of the three contributing waves, the corresponding fields are used to determine the wave energy456

densities of the individual wave trains in physical space. This procedure is similar to the one used by Borchert et al.457

(2014), however without a separate local Fourier transform around each grid cell. To estimate energy exchanges the458

energy densities were integrated in the vertical and compared among the individual triad members. For convenience459

we normalize the vertically integrated wave energy densities by the sum of all triad components.460

7.3 | Energetics of the Interacting Wave Trains461

An example of the total wave energy density corresponding to the case with m̂2 = 10 and u0 = 1ms−1 is shown in462

Fig. 4. Note that the energy of the background flow is filtered and not shown due to the projection onto the wave463

modes. Naturally, the WKBJ simulations do not account for the variation on the scale of the wave lengths and lack464

structure with respect to the wave-resolving simulations (Fig. 4b). As a result interference patterns with high wave465

energy densities are not present in the WKBJ simulations. However, the evolution of the wave train amplitudes are466

reproduced both qualitatively and quantitatively.467

Separating the fields into the distinct wave trains and integrating the wave energy densities in the vertical as468

explained above we find a generally good agreement in the temporal evolution of the individual wave energy densities469

(Fig. 5). For early times, t ≤ 24h, and late times, t ≥ 48h, there is approximately no wave-wave interaction and470

the evolution of the wave trains is dominated by the wave modulation through the background shear flow (Fig. 5a).471

Naturally the weakly non-linear multi-scale WKBJ theory is an approximation to the fully non-linear dynamics. As an472

example the waves in the wave-resolving simulations may be modulated not only due to the prescribed mean-flow473
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F IGURE 4 Total wave energy density of simulations with m̂2 = 10 and u0 = 1ms−1. The panels (a) and (b) depict
the projected results for the wave-resolving and WKBJ simulations, respectively.
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F IGURE 5 Integrated wave energy densities of the separated wave trains in the simulations with m̂2 = 10 and
u0 = 1ms−1. Panels (a)-(c) show the absolute wave energy density, the relative wave energy density, and the mean
absolute wavenumber, respectively. Solid lines correspond to the wave-resolving and dashed lines depict WKBJ
simulation results. The black lines in panel (a) depicts the sum of the individual wave energy densities. The solid lines
are broken where the wavelengths of the different wave trains have similar absolute values and can therefore not be
separated.
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shear but also due to the self-induced mean flow (Sutherland, 2006b). However, this effect is neglected in the WKBJ474

simulations, as it appears in the theory only at higher orders in the scale separation parameter, ε. Moreover the scale475

separation assumption where ε → 0 and the weak wave amplitude assumption (Eq. 7) are potential sources for errors.476

These systematic baises or other higher-order effects associated to wave modulation and not accounted for cause a477

mismatch in the evolution of the wave energy densities (Fig. 5a), particularly for t ≥ 48h. To account for the effect478

of the modulation on the wave energy we normalize the individual wave energy densities by the total wave energy479

density, i.e. the sum of the individual wave energy densities (Fig. 5b). These relative wave energy densities show a480

qualitatively good agreement throughout thewhole simulation - including the dynamics during the interaction at times481

from approximately 24h to approximately 48h. A closer look reveals, however, that the wave energy of the generated482

wave differs by up to 30% relative to the LES (Fig. 5a and b). Possible reasons for this mismatch could be a systematic483

bias in the phases of the complex wave amplitudes introduced by the parametrization (cf. Section 6), inaccuracies484

of the parametrization parameter, κ , near α = 0.1 (cf. Fig. 1), or higher order modulation effects as discussed above.485

Despite this shortcoming the total energy exchange is well reproduced for various settings as discussed below. If, for486

example, onewould consider an experiment with the same initial conditions but neglectedwave-wave interaction, the487

superimposing wave trains would be modulated with constant wave action densities and not exchange any energy.488

In contrast, an experiment where the wave-mean-flow interaction is negligible, but the near resonant wave-wave489

interaction is included, would exhibit constant wave energies, but also no energy exchange, as it is the modulation490

which brings the waves into resonance. Note that where the absolute value of the wavelengths of the wave trains are491

too close (cf. Fig. 5c), a separation of the wave trains is numerically difficult and therefore omitted (cf. gaps in Fig. 5a492

and b).493

Values of relative wave energy densities at the final time of the simulation serve as benchmark for comparisons in494

the further analysis of interaction simulations under varying conditions. In particular we consider varying background495

velocities as well as wave amplitudes (Figs. 6 to 8).496
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F IGURE 6 Integrated relative wave energies per wave train at the end time of the simulations with
non-dimensional vertical wavenumber m̂2 = 5 and varying background velocity (a) as well as varying amplitude (b).
While solid lines depict the wave-resolving simulations, dashed lines represent the corresponding WKBJ simulations.
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F IGURE 7 Same as Fig. 6 for simulations with the non-dimensional vertical wavenumber m̂2 = 10.
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F IGURE 8 Same as Fig. 6 for simulations with the non-dimensional vertical wavenumber m̂2 = 15.
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7.4 | The Effect of the Wave Amplitudes497

Varying the initial gravity wave amplitudes, α , that is varying the strength of the nonlinearities relative to the modu-498

lation of the wave trains, we find good agreement for relative amplitudes smaller than α = 10−1 (Figs. 6b, 7b, and 8b).499

As expected, the energy exchange increases with increasing amplitude as the nonlinearities are growing stronger. For500

amplitudes α > 0.1, that is closer to the criterion of static instability, theWKBJ simulations fail to reproduce the wave-501

resolving simulations qualitatively and overestimate the triadic energy exchange. In general larger amplitudes may be502

subject to stronger nonlinear effects like self-acceleration, modulational instabilities, or overturning and turbulence503

(Sutherland, 2006a; Dosser and Sutherland, 2011; Bölöni et al., 2016). The wave-mean flow interactions, including504

the self-acceleration, are higher order effects in the WKBJ expansion and may be taken into account to improve the505

here presented method in the limit of larger amplitudes. As expected a WKBJ theory may not cover the break down506

of the wave trains at amplitudes near the static instability criterion unless using a suitable parameterization (Lindzen,507

1981; Bölöni et al., 2016). Also, the employed parameterization with a globally constant tuning parameter, κ , may508

lead to systematic biases at larger amplitudes (cf. Section 6).509

In general wave amplitudes are modified through both triadic interactions and wave modulation (cf. Eqs. 22, 51,510

and 56). For small background flows u0 ≤ 1ms−1 the wave train evolution is dominated by triadic wave interactions511

and the amplitude variation due to wave modulation are comparatively small. Thus we do not correct the initial512

amplitudes with respect to the modulation while studying the influence of the wave amplitude and modulation on513

triadic interactions for u0 ≤ 1ms−1. The wave amplitudes in Figs. 6 to 8 refer to the wave amplitudes in the initial514

conditions (cf. Eq. 84). For runs with strong background flows, i.e. where the evolution is dominated by the wave515

modulation, we correct the initial amplitude such that the wave amplitudes are comparable near resonance.516

7.5 | The Effect of the Background Shear Strength517

The wave modulation by the imposed background shear leads to a continuous spectral shift of the wavenumbers518

and frequencies. Effective energy exchange, however, is only possible near exact resonance. The resulting passage519
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F IGURE 9 Same as Fig. 8a for simulations with the non-dimensional vertical wavenumber m̂2 = 15 and α = 0.05.

through the resonance conditions therefore leads to a more localized interaction and limits the energy exchange. A520

stronger background shear is associated with an increased modulation and thus generally leads to a reduction of the521

energy exchange between the triad members. This effect is well reproduced in the here presented simulations for522

m̂2 = 5, m̂2 = 10, and m̂2 = 15 (Figs. Fig. 6a, 7a, and 8a) with a mismatch for large wavenumbers (m̂2 = 15) and small523

background velocities (u0 ≤ 0.4ms−1) (Fig. 8a).524

For background velocity amplitudes smaller than u0 = 0.5ms−1 the wave-induced mean flow (e.g. Sutherland,525

2006b) in the wave-resolving simulations may lead to background shear strengths comparable to the imposed shear.526

This shear consequently modulates the wave triads leading to a shift in wavenumbers and frequencies relative to the527

WKBJ simulation where the effect is not included, as explained above. This effect, albeit small at small amplitudes,528

may lead to significant differences between thewave-resolving simulations and theWKBJ simulation under conditions529

where the spectral width of the triad resonance is small. Correspondingly, the mismatch between the simulations for530

background flows, u0 < 0.5ms−1, at larger vertical wavenumbers, L̃m2 = 15, is believed to be caused by neglecting the531

wave-mean-flow interactions in the present WKBJ theory (cf. Fig. 8a). In particular the self-induced wave modulation532

perturbs the near-resonant interaction such that, even at small amplitudes, the energy exchange is limited due to533

the frequency deviations. For comparison we repeat the experiment with varying background flows for m̂2 = 15 but534

decrease the amplitude to α = 0.05 (Fig. 9). Naturally at smaller amplitudes not only the triadic wave interaction535

but also the self-induced wave modulation of the wave trains is reduced. Consequently the associated frequency536
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deviation from exact resonance is smaller. At the same time we find that the triad interaction is significantly stronger537

in the wave-resolving simulation despite the reduced nonlinearities at small imposed mean flows, u0 < 0.5ms−1. This538

qualitatively changed behavior of the wave-resolving simulation agrees well with the WKBJ prediction (Fig. 9).539

Herein also lies a qualitative argument as to which non-linear effects dominate the wave evolution. At amplitudes540

near the static instability threshold all non-linear effects, like the here considered wave-wave interaction, the wave541

modulation by the mean-flow shear, or the here excluded self acceleration, are predicted to be equally important542

(Achatz et al., 2017). Reducing the amplitude, however, changes the picture. Using a weakly non-linear theory we find543

a regime where the wave modulation by the mean-flow shear and the wave-wave interactions dominate the dynamics544

while the self acceleration effect becomes a small correction (cf. Sections 2 and 5) which could be included into the545

theory by introducing an additional time and spatial scale (not shown). Also we have shown that at amplitudes α ≤546

10−1 the employed parametrization is valid, howevermay produce systematic biases at larger amplitudes (cf. Section 6).547

Additionally we find the qualitative importance of various effects to be depend on the considered wave properties548

(cf. above). Consequently a quantitative mapping of the importance of the different non-linear effects is dependent549

on many variables and thus beyond the scope of this work.550

7.6 | Energy Exchange at Strong Background Shear Flows551

As explained above, background flows with stronger shear may lead to an increase in wave modulation and conse-552

quently a decrease in triadic wave interactions. To include values with shear strengths typical for atmospheric jet553

regions we augment our findings with WKBJ simulations for mean flow strengths up to u0 = 9ms−1. Those simula-554

tions confirm that for strong shear the simulation is dominated by wave modulation with small energy exchange due555

to triadic interactions (Fig. 10). While the evolution of the wave action density shows virtually no variations (Fig. 10a)556

the wave energy densities show strong variability due to the wave modulation (Fig. 10b). To estimate the strength of557

the wave interaction we repeat the simulations with disabled interaction scheme and then compare the two simula-558

tions. This allows us to we compute the fraction of energy transferred during the interaction. As a result we find that559

the transferred energy decreases systematically from values as high as 19% to well below 5% when increasing the560
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F IGURE 12 Zonally and monthly averaged zonal velocities from the URAP data-set for March (a-b) and
September(c-d). For comparison we show the vertical shear of the zonal velocity relative to the scaling of the
idealized simulations, H

2πu0
∂zu with the reference values H = 40 km, and u0 = 1ms−1 (b and d). The thresholds for

the relative vertical shear correspond to energy transfer rates of 5% (5.9), 10% (2.5), and 19% (1) in the idealized
simulations (cf. Fig. 11).
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background amplitude from u0 = 1ms−1 to u0 = 9ms−1 (Fig. 11).561

For a representative comparison with the atmosphere we consider the zonally averaged zonal velocity from the562

URAP climatology (Swinbank and Ortland, 2003) and its vertical shear. In particular during spring and autumn, after563

the break down of the polar night jet, we find large areas of relatively un-sheared zonal velocity in mid-latitude to564

sub-polar regions (Fig. 12a and c). For comparison we depict different vertical shear strengths as grey overlays that565

correspond to energy loss rates of > 19% (black), 10%−19% (grey), and 5%−10% (light grey) in the idealized simulations566

(Figs. 11 and 12b and d). These reveal that large areas correspond to background flow shear strengths that permit567

for triadic wave-wave interactions without suppressing the spectral energy transfer due to wave modulation. We568

conclude that depending on the region and the season the gravity wave dynamics in the atmosphere is likely to be569

impacted by triadic wave-wave interactions.570

8 | SUMMARY AND CONCLUSIONS571

Wehave presented and applied aweakly nonlinear, Boussinesq theory of non-hydrostatic internal gravity waves (GWs)572

in a varying mean flow with constant stratification, extending previous work by Grimshaw (1988). The theory com-573

prises a superposition of wave trains whose amplitudes are modulated by a slowly varying background. There are574

three well-separated scales: the GW period and wavelength define the fast and short scales, the spatial scale of the575

mean flow represents the longest scales, and nonlinear GW-GW interactions act on intermediate scales. Away from576

resonance GWs follow linear WKBJ dynamics, characterized by short and long scales, and wave action is conserved.577

In resonance GWs depend on all three scales, and energy is exchanged between GWs in triadic interactions. Wave578

amplitudes are weak so that GWs are still well-defined, including dispersion and polarization relations, and there is no579

leading-order impact on the mean flow. The modulation by the mean flow permanently changes the GW wavenum-580

bers so that they are brought by this process into and out of resonance. This adds an additional source of spectral and581

spatial variability not accounted for in theories without a varying mean flow, like wave-turbulence approaches (e.g.582

Nazarenko, 2011).583



50 G. S. Voelker et al.
For a numerical implementation of this theory we have supplemented a spectral ray-tracing code (Muraschko584

et al., 2015) by a wave-wave-interaction module. Consistent with the two scaling regimes a parameterization for585

an effective spectral resonance width has been developed, allowing for fully resonant interaction within a spectral586

resonance window. Beyond the corresponding spectral resonance threshold the wave triad members stop interacting587

and follow linear WKBJ dynamics. The universal resonance threshold is adaptive to changes in triad wavenumbers as588

well as background shear strengths and therefore applicable for a wide range of wavenumbers and background shear.589

Only for wave amplitudes near the threshold of static instability systematic biases may occur, possibly exacerbated by590

the so-far neglect of a direct, non-dissipative, transient GW impact on themean flow, which has been shown by Bölöni591

et al. (2016) to potentially be as important as impacts by wave dissipation. We believe this is the first implementation592

of interacting internal gravity wave triads into a WKBJ ray tracer taking into account the modulation of the waves by593

a slowly varying background.594

The supplemented WKBJ code is validated against simulations from a wave resolving model. In all cases con-595

sidered wave amplitudes and mean flow have been assumed to be horizontally homogeneous. Two wave packets596

are considered that generate a third one while spectrally passing through resonance for a range of vertical scales.597

Comparing the WKBJ ray-tracing simulations with corresponding wave-resolving simulations we generally find good598

qualitative and quantitative agreement for the wave modulation and triadic interactions, provided the wave amplitude599

with respect to static instability does not exceed 0.1. It is clear, however, that beyond this limit direct, non-dissipative600

GW-mean-flow interactions are not negligible anymore.601

Depending on the strength of the mean-flow shear two interesting regime limits emerge: On the one hand, in602

weak shear and at large vertical wavenumbers nonlinear effects become visible that lead to differences between603

wave-resolving and WKBJ simulations. It is very well possible that this is due to the self-induced mean wind that the604

present WKBJ implementation does not take into account. In strong background shears, on the other hand, wave-605

wave interactions seem to become partially suppressed by the wave modulation on account of the mean flow. This606

is due to both the corresponding strong changes in wave energy density and the more rapid development of the607

GW wavenumbers, so that the time window for resonant triad interactions is narrower. Hence an eventual outcome608

of further studies of GW-GW interactions in the atmosphere might well be that wave modulation dominates the609
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evolution of the GW spectrum in strongly sheared regions, such as jet streams, while triadic interactions dominantly610

shape the GW spectrum in more weakly sheared regions, such as the mid-latitudes and polar regions during spring611

after the breakdownof the polar night jet. There, however, themodulation ofGW-GW interactions by the self-induced612

mean wind could be non-negligible, a process not taken into account by wave turbulence theory.613

Obviously there still is some way to go until this picture is confirmed. Both varying stratification and rotation614

will have to be included into theory and numerical implementation. Compressibility effects should be considered, but615

most pressing seems to be an inclusion of the GW impact on the mean flow. While atmospheric winds are clearly616

horizontally inhomogeneous GW parameterizations are typically single column implementations and do not take into617

account the lateral propagation of realistic internal gravity wave packets. Yet, a three-dimensional implementation618

of a WKBJ ray tracer could potentially carry over the concepts for the wave-wave interaction applied here with an619

accordingly adapted strategy for the ray tracing geometry. It would also be of interest to consider clusters of GW-GW620

interactions with common triad members (cf. Walsh and Bustamante, 2020), and validate the approach against these.621

Finally, a challenge will be continuous GW spectra. Our theory still assumes that the GW spectrum has distinct peaks622

that are sufficiently separated to allow for the discretely polychromatic GW fields considered here. Smoother spectra623

will need further theoretical developments, that however seem to be worth the effort.624
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A | NOTES ON THE IMPLEMENTATION IN A RAY-TRACING MODEL633

The numerical implementation of the WKBJ theory for interacting internal gravity waves comes with various difficul-634

ties. At the same time it is crucial for the usage of the insights for future studies. We therefore outline our solution635

strategy for a one-dimensional spectral ray-tracing model (Muraschko et al., 2015) in the following three sections.636

A.1 | Spectral Ray Tracing637

Using a Lagrangian ray-tracing technique (Muraschko et al., 2015), the code predicts the development of a spectral638

wave action density, N(z ,k, t ) , depending on vertical position, z , wavenumber, k = kh + mez , decomposed into its639

horizontal part,kh , and the vertical wavenumber,m , and time. In the triad cases discussed here it peaks inwavenumber640

space at the three contributing wavenumbers and its wavenumber integral yields the superposition of the spatial wave641

action densities appearing in the theory derived here, i.e.642

∫
d 3k N(z ,k, t ) =

∑
β

Aβ (z , t ) (86)

The corresponding prognostic equation is, outside of the triad-resonance regime,643

DrN
Dt

= 0 (87)
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where644

Dr
Dt

=
∂

∂t
+ cg ,z

∂

∂z
+ ¤m ∂

∂m
(88)

is a material derivative. Here cg ,z is the vertical group velocity of a spectral component and ¤m is the rate by which the645

vertical wavenumber, and hence also frequency and group velocity, changes in response to vertical derivatives in the646

resolved horizontal flow. Because of the assumed horizontal homogeneity of wave amplitudes and mean flow, their647

is no movement in kh-subspace. The model allows a GW impact on the resolved flow, given by648

(
∂U

∂t

)
gw
= − ∂

∂z

∫
d 3k cg ,zkhN (89)

which is, however, neglected here, due to the weak-amplitude assumption of our theoretical setup. The numerical649

discretization uses a decomposition of that part of phase space, spanned byx and k, with non-zero N into rectangular650

ray volumes. These ray volumes propagate through phase space, with velocities cg ,z and ¤m that typically distort the651

ray volumes - while keeping their volume content - as well as displace them, and only in the wave-resonance regime652

their wave-action density is changed. Further details are given by Muraschko et al. (2015).653

A.2 | Gapless Wave Trains654

In the original implementation described by Muraschko et al. (2015) each ray volume is displaced in z following the655

group velocity of its central carrier ray. For its displacement in m the wave-number velocities ¤m are determined at656

its m-edges, with same position in z as the carrier ray, yielding on top of the m-displacement also a change in the657

ray volume width ∆m in m. Because the volume content must be unchanged, the vertical width of the ray volume658



54 G. S. Voelker et al.
is then adjusted so that ∆m∆z does not change. In this procedure, ray volumes initially adjacent in z may begin to659

overlap or drift apart at later integration times - the representation of initially continuous wave trains may become660

fragmented. Triadic interactions, however, depend on the spatial overlay of the triad members and therefore suffer661

from reduced interaction within the gaps of a wave train using this approach. To resolve these discontinuities we662

consider two carrier rays per ray volume which are initially located at the central wavenumber but on the upper663

and lower boundary. Advancing the two carrier rays allows for the ray volume to shear in spectral direction due to664

a height-dependent background shear. Consequently the ray volume’s vertical wavenumber comprises a gradient in665

height. The corresponding group velocities of the two carrier rays are used to displace the upper and lower boundaries,666

and ∆m is adjusted so that the phase space volume content remains unchanged.667

A.3 | Interaction Between Ray Volumes668

Both position as well as the spatial extent of the ray volumes rarely coincide. Hence, special care has to be takenwhere669

interacting ray volumes overlap partially. Our implementation of the triadic interaction into the ray tracer therefore670

relies on a chain of geometric operations.671

First all spatially overlapping pairs of ray volumes are tested for possible resonances making use of the resonance672

threshold defined in Eq. (82). For simplicity and based on the knowledge about the chosen initial conditions we673

restrict the identification of resonant pairs here to a sum interactions. However, this assumption may be easily relaxed674

to both sum and difference interactions. Note that single ray volumes may be in resonance with several other ray675

volumes due to partial overlaps. Based on the identified resonance pairs the interacting ray volumes (parent rays)676

are split such that a minimum set of vertical layers with full overlap can be considered for the energy exchange.677

The corresponding central carrier wavenumbers are deduced from the linear interpolation between the values on678

the boundaries (cf. Appendix A.2). In each vertical interaction level the identified sum interaction also defines an679

interaction volume bounded by the vertical bounds of the slab and the maximum spectral deviation allowed, based on680

the interaction threshold. In particular the minimum wavenumber, m′1, and maximum wavenumber, m′′1 , are derived681
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F IGURE 13 Schematic of the geometry between interacting wave triads. While the black rectangles depict the
parent ray volumes the red and green rectangles represent the interaction volume and and existing ray volumes
overlapping with the interaction volume, respectively. The central dots represent the central carrier rays. All ray
volumes are first split based on the vertical overlap and the spectral resonance threshold (a). Consecutively all ray
volumes overlapping with the resonance volume are unified into a single ray volume filling the entire interaction
volume (b).
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from the condition682

���� ω̂2 + ω̂3 − ω̂1ω̂2 + ω̂3

���� = ����1 − ω̂1 (k2 + k3,m1)
ω̂2 + ω̂3

���� ≤ R † (90)

where we know that the resonance conditions are fulfilled exactly in the horizontal such that k1 = k2 + k3. In other683

words the spectral interaction threshold also defines the spectral window with which a resonant pair can exchange684

energy. Within this interaction volume all existing ray volumes are split and unified into a single ray volume which685

then forms the third triad member. This geometry is visualized in Fig. 13. Consecutively all triads can be advanced686

in time using the interaction equations (Eq. 59) with the dephasing exponential replaced by unity as explained in687

Section 6. The equations are advanced using a third-order Runge-Kutta scheme equivalent to the time integration of688

the wavenumbers and positions. Note that in order to derive the wave amplitude from the wave action density (cf. Eq.689

22) the phase of the corresponding complex wave amplitude is needed. Therefore the phases of the complex wave690

amplitudes which are associated to the ray volumes must be stored and applied accordingly. These phases may be691

set to a vertically constant value at initial times but are modified during the interaction steps. An initially zero-valued692

complex amplitude has an initially undefined phase, which can be chosen arbitrarily. As a result of the nonlinear693

interaction, this phase acquires a defined value in subsequent time steps as the amplitude becomes non-zero. Finally,694

the resulting wave action changes are deduced from the integrated amplitudes and all initially split parent rays are695

reunified.696

This procedure generates a large number of small ray volumes around the interaction volumes in each time step.697

Introducingmerging schemes for these ray volumesmay therefore greatly reducememory usage, output data size, and698

computation time. The here presented solution strategy can be used for a range of applications. Triadic interactions699

with a modulating background shear (cf. Section 7) or a variable background stratification as well as phase resolving700

simulations with zero background flows are among the use cases.701
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