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ABSTRACT

A principal interaction pattern (PIP) analysis aims at finding a limited number of structures in seemingly very
complicated physical scenarios that are time independent up to their amplitudes and phases. These vary according
to nonlinear equations determining the interaction between the different structures. By minimizing a suitably
chosen error function, calculated by comparing a PIP model with observed or synthetic datasets, both the struc-
tures and their interaction coefficients are determined simultaneously. This might therefore be a useful tool for
identifying basic structures and processes underlying baroclinic wave life cycles.

As a first step in this direction, an accordingly devised PIP model has been applied to a synthetic dataset
obtained by numerically integrating the tendency equations of a very simple spherical and quasigeostrophic two-
layer model incorporating surface drag and thermal damping. For fairly typical dissipative parameters, a PIP
analysis identifies three basic structures that give a good description of the complete dynamics. The shape of
these patterns and their interaction coefficients seem to be controlled by the diabatic parameters of the two-layer
model. The initial conditions of an examined time series have virtually no influence. The role of the three PIPs
in the baroclinic life cycle is discussed. An analysis of their interplay with each other and the zonal wind indicates
that dissipation and forcing of the eddies themselves is an important factor in the maintenance of multiple
baroclinic wave life cycles. Comparative analyses of cases with stronger and weaker dissipation indicate that
the number of dynamically relevant patterns decreases with increasing dissipation, so that PIPs appear to be a
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valuable tool for the analysis of sufficiently dissipative systems.

1. Introduction

Starting with the classical work of Charney (1947)
and Eady (1949), baroclinic instability has attracted
broad interest as a tool for interpreting cyclone de-
velopment. With its linear dynamics being mostly
understood, the nonlinear dynamics of the problem
has increasingly become the central field of research.
A whole hierarchy of model types has been used for
this purpose. Analytical studies (e.g., Pedlosky
1970) had to be limited to relatively simplified situ-
ations, such as very weak instability in a quasigeo-
strophic two-layer model on a S-plane. The case of
strong instability in such models has been studied by
numerical methods (e.g., Mak 1985; Feldstein and
Held 1989). Meanwhile similarity with the real at-
mospheric situation had decisively been improved in
simulations of the nonlinear development of baro-
clinic waves on a sphere using the primitive equa-
tions (Gall 1976; Simmons and Hoskins 1978; Fred-
eriksen 1981). By these and later examinations fol-
lowing the same line (e.g., Young and Houben 1989;
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Branscome et al. 1989; Barnes and Young 1992;
Thorncroft et al. 1993), it has been demonstrated that
baroclinic waves undergo a clearly defined life cycle.
Provided the basic zonal flow has sufficiently strong
meridional shear, the baroclinic growth phase is fol-
lowed by a mainly barotropic decay phase. In the
presence of heating and surface friction, wave and
basic zonal flow are prevented from finding an equi-
librium, and several life cycles follow each other in
a multiple fashion. Especially in the Northern Hemi-
sphere, baroclinic waves appear often more as pat-
terns of limited extent, like wave packets, than
equally distributed along a latitude circle, as assumed
in the work mentioned above. Wave packet dynamics
and the associated downstream baroclinic develop-
ment due to convergence and divergence of geopo-
tential fluxes has therefore been the subject of several
recent studies (e.g., Chang 1993; Orlanski and Chang
1993; Lee and Held 1993). Nevertheless, it has been
possible to identify life cycle behavior in atmo-
spheric observations (Randel and Stanford 1985a,b;
Randel 1990), so that it can still be seen as an
important corner stone for atmospheric cyclone be-
havior.

By the use of statistical methods, Schnur et al.
(1993) have recently found characteristic patterns in
observed Northern and Southern Hemispheric data
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that are quite similar to baroclinic waves in the dif-
ferent phases of a life cycle. This has been motivation
to examine the possibility of searching for such char-
acteristic patterns in observed or.model data on the
basis of a dynamical approach. A principal interac-
tion pattern (PIP) analysis as outlined by Hassel-
mann (1988) could possibly be a rather useful tool
for this purpose. It aims at finding a limited number
of structures in the seemingly very complicated dy-
namics that are time independent up to their ampli-
tudes and phases. These vary according to nonlinear
equations, determining the interaction between the
different structures. By minimizing a suitably chosen
error function, both these structures and their inter-
action coefficients are determined simultaneously.
This work presents a first step toward using PIP mod-
els to study the different phases underlying baro-
clinic wave life cycles. For a start we examine this
question using a synthetic dataset, which is obtained
with a two-layer model.

. In section 2 we will summarize the essentials of
the two-layer model used. Section 3 presents the PIP
model applied to the data. In section 4 we present the
results of our PIP decomposition of these data for
typical diabatic parameters. Baroclinic wave devel-
opment will be discussed within the framework of
the PIPs thus obtained. The work will be summarized
in section 5.

2. The two-layer model

The data used in this work for a PIP analysis were
obtained by numerical integration of the equations of
a very simple two-layer model. Nevertheless, as will
be seen later, it has sufficient similarity to the real
atmosphere so as to be able to reproduce the main
features of baroclinic wave life cycles. Starting with
the quasigeostrophic version of the spherical two-
layer model as formulated by Lorenz (1960), surface
friction and Newtonian cooling are included. Fur-
thermore, we have incorporated forcing terms that
make a chosen zonal wind configuration a stationary
solution of the system. To numerically stabilize the
integrations, weak horizontal diffusion is also
needed. Static stability is assumed to be a constant.
The most drastic simplification is that the Coriolis
parameter is replaced by a latitude-independent value
in the thermal wind equation as well as in the term
describing vertical advection [ B-model; e.g., Baines
and Frederiksen (1978)]. Thus we finally end up
with two equations giving the necessary time deriv-
atives:

2 20— Il 2 _ 2 . Qf
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By ¢ = (¢ + ¢:)/2 and 7 = (¢3 — ¢,)/2, baro-
tropic and baroclinic streamfunctions are denoted,
where ¢ and ¢, are the upper- and lower-layer stream-
functions; J is the Jacobian operator; k, and h, are Ek-
man surface friction and Newtonian cooling, respec-
tively; F, denotes zonal mean vorticity forcing; 7 a
forced zonal shear corresponding to the temperature
distribution forced by Newtonian cooling; and « is the
horizontal diffusion applied to the equations. The pa-
rameter r = 2 sing,/7 '’* contains the latitude o, chosen
for the evaluation of the Coriolis parameter and the
static stability . The equations are nondimensional-
ized using ay, 1/, and (a392?)/(c,b) as length, time,
and potential temperature scale, respectively. Here a,
is the radius of earth, { its angular velocity, ¢, the heat
capacity of air at constant pressure, and b = 0.124. For
a derivation of (1) and (2) see appendix A.

Because the quasigeostrophic approximation is in-
valid near the equator and variation of the Coriolis
force with latitude is incompletely described by the
model, only scenarios that are equatorially symmetric
were considered; ¢, was chosen to be 45°N. At least in
middle latitudes the error made by the model should
not be too dramatic. In the cases presented here we have
used a static stability & = 0.01, corresponding to a
temperature difference between the layers of 34.5 K.
The horizontal diffusion used was k = 3 X 107%a*/d,
which is about as small as possible to prevent the adi-
abatic limit of the baroclinic wave life cycles examined
here from eventually piling up energy at small scales.

For the determination of the synthetic dataset, all
variables are represented by a truncated expansion in
terms of spherical harmonics. Horizontal resolution
comprises a rhomboidal spectral truncation at zonal and
meridional wavenumber 15. An explicit time scheme:
using a variable-order, variable-step Adams method
was applied as the integration scheme for the spectral
equations.

3. Principal interaction patterns
a. General method

The general idea of a PIP model is the following
(Hasselmann 1988): Let us assume that we have a dy-
namical system that can be described at any moment
by a complex-state vector ®(¢). Its time development
shall be given by a set of first-order differential equa-
tions
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d

&t P =F(D, 1),
where F may depend nonlinearly on ®. For such a
system, a PIP analysis tries to find a limited number of
patterns p, that in combination give an optimal repre-
sentation of the complete-state vector at any time such
that the residual error

p(t) = ®(1) — Y a(n)p,

(3)

(4)

becomes as small as possible. The only time depen-
dence is in the a,(z). Assuming the patterns p, to be
known, their coefficients can be determined by mini-
mization of the residual error to be

au=2(N—l)uuZm¢i’ (5)

where i is the index of the state space spanned by the
system and the matrix N is given by

N, = Zﬁpm- (6)
The overbar denotes complex conjugation. The dynam-
ical aspect of the method enters with a second step,
which makes PIPs so interesting for the reduction of
complex dynamical systems. The evolution of the PIP
coefficients is postulated to follow a set of nonlinear
equations

da,
dt

=GJla,a, -, ap), &)
with a small number of parameters «,. In contrast to
Hasselmann (1988), we will assume that some of these
might also be connected to the patterns by some bound-
ary conditions. To determine both parameters and pat-
terns, a minimization of the error

E(a],”'!aq7pl’”'7pM)=Z|§_§I2 (8)

is performed where the sum is over all times at which
data from a time series for ® exist, and

&= GJa, a, -, a,)p, (9)

is the tendency of the approximated state vector; a is
determined by (5). Here it should be mentioned that,
in contrast to the more general formulation of Hassel-
mann (1988), we have used the Euclidean metric for
measuring errors throughout our work.

b. Application to the B-model

For an application of the PIP method to B-model
data, the exact nature of the state vector has to be clar-
ified. In our case state space is spanned by all spherical
harmonic coefficients of 7 and ¢ that are possibly non-
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zero and for which the zonal wavenumber is nonneg-
ative. In the case of an equatorially symmetric B-
model, these are all coefficients with odd meridional
wavenumbers. In the special case of baroclinic wave
life cycles starting with a single normal mode at a given
zonal wavenumber on a zonally symmetric wind, our
state space is further reduced to coefficients describing
the zonal wind, the wave, and all its upper harmonics
in zonal wavenumber.

In order to make the following development more
clear, we decompose the full state space into two sub-
spaces. One of them comprises all zonally symmetric
components forming a vector z. The other contains all
wave coefficients (zonal wavenumber m # 0). Its el-
ements are denoted by a vector w. Thus we can for-

mally write
' ( z ) .
w

For reasons of simplicity, each PIP is assumed to be an
element of one of these two subspaces.

For the moment, simplifications of the zonally sym-
metric part are not sought so that we suppose that there
are as many zonally symmetric PIPs as there are di-
mensions for them. They are taken to be the set of
natural unit vectors of this space; that is, each of them
corresponds to one zonal spherical harmonic coeffi-
cient of either ¢ or T; that is, they are defined by

—_— ev
pu - 0 )
where e, is the vth unit vector of the zonally symmetric
subspace. Their coefficients are then given by

(10)

(11)

(12)

The PIPs we are really looking for are the prominent
ones existing in the wave subspace; that is,

(1)

The evolution equations describing their development
by interaction with each other and the zonal wind can
be derived as follows: In appendix B it is shown that
formally the tendencies for the elements of z and w can
be written

a, = 2,.

(13)

i =F, + ZAUZJ' + Z BijijWk (14)
j Jok
w; = Z Cijo + z Diij,‘Wk
j Jk
+ Z (Eijkijk + Fijkijk), (15)

Jk

where F; denotes all forcing contributions, A; dissipa-
tion and heating of the zonal wind, By wave mean
zonal wind interaction, C; wave dissipation and the
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beta-effect, Dy, influences of the zonal wind on waves,
and E;; and F; nonlinear wave—wave interactions. Let
us now assume that

w =2 aq, (16)

holds exactly. Then by transformations that are com-
pletely analogous to the ones leading to (5), it can be
shown that (14) and (15) can be replaced by

i =2Az - Z) + Y aya,a, (17)
J v,
and
a, = 2 W@y + Z IBVﬂjaqu
M Ju
+2 (€vpp@uay + Puypa,a,), (18)
e
where
@iy = 2, Bixqjy Gru (19)
jk
Wy = Z (T—I)Vx Z —qT':CuqJ# (20)
K ij
ﬁuyj = z (T_l)l/K 2 E:Dijquu (21)
K ik
€ppp = Z 2 (T_I)VKE:Eijkqjﬂqkp (22)
K ik
(pu;.tp = 2 Z (T-—l)uKﬁFijkqjy‘q—I:;' (23)
& ijk

These tensor elements are the a; connected to the PIP
vectors g, by boundary conditions. The elements of the
matrix T are given by

Tuu = 2 QTQ;‘;H (24)
and the Z; denote a forced stationary zonal solution
such that

J

for all i. Thus the G, indeed have the form prescribed
by (7), where the Z; assume the role of the «; not
connected to the patterns by boundary conditions. Be-
fore applying this PIP model to multiple baroclinic
wave life cycles in our two-layer model, let us briefly
discuss how the method used for its derivation can be
applied in connection with more general datasets.

(25)

¢. A PIP model for general datasets

It can be shown that the method we used for obtain-
ing a suitable PIP model can be generalized for anal-
yses of most imaginable systems. For this, let us con-
sider a general state space described by a state vector
®. Possible examples could be data from a global cir-
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culation model or measured atmospheric data. It might
be especially helpful not to consider the full state space
but only a suitably chosen subspace, as for example,
spectral coefficients of the streamfunction in two rep-
resentative levels. We assume that for this subspace a
model exists that describes the relevant dynamics at
some accuracy. Keeping within the framework of the
so far chosen example, this could be a quasigeostrophic
two-layer model. The tendency equations of this model
shall be given by :

§M=I-I(§, a, (26)

T aq’ t);
so that

=, +¢, (27)
with a not too large residual error £. The parameters -
a, denote external parameters as diabatic parameters,
mean static stability, etc. For extracting from this a PIP
model, we insert the expansion

®=Yap, (28)

into (26) and (27), combine the resulting equations
under neglect of &, perform the same transformations

as in section (3.2), and arrive at
d, = GJa,a;, -, a, D, (29)
where
Gu(a, aqa t)lp = (N—])uu ZP—WH:(Z alPV? aq’ t)
(30)

and the index p indicates evaluation of the specified
function using a given set of PIP vectors. The error
function to be minimized is then given by

6(‘1|7 '..’aq,pl’ '..9pM, t)

=3 1% -3 Gla,a, 0)l,p.|> (31)

The a, are to be calculated via (5). If good knowledge
about some external parameters exist, these might be
kept fixed during the optimization. One great advantage
of PIP analysis is, however, that all external parameters
can also be determined by the optimization. One can
thus hope to extract from rather complicated datasets
elementary structures, together with their natural evo-
lution equations, which describe most of the dynamics
internal to the system. By analyzing these, a clearer
picture of the essentials of this system might become
available. In spite of the huge amount of numerical
work certainly involved in practical development of
such a PIP analysis, the prospects indicated could make
it worthwhile. For the moment, however, let us come
back to two-layer model data for a test whether such a
projection can work at all.
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FiG. 1. The two zonal wind and potential temperature
profiles used for initializing B-model integrations.

4. PIP analysis of multiple baroclinic wave life
cycles

a. The optimizations and their results

In order not to detract from our main intention to test
the possibilities of a PIP analysis, this paper only re-
ports an analysis of the wave subspace spanned by the
zonal wavenumber of the initial perturbation to the
zonal wind, so that all upper harmonics are neglected.
Then all wave—wave interaction terms (22)-(23)
vanish, making the evolution equations especially sim-
ple. We will show that at least in the cases chosen here
this approach is sufficient to extract the important wave
PIPs dominating baroclinic wave life cycle behavior.

In a first experiment the values for surface friction
and thermal damping are fairly typical ones: Ay = 0.1
d 'and k, = 0.25d~". Two runs of 600 d with different
initial conditions were made. In each of them the initial
zonal mean surface velocity was zero. The upper-layer
zonal mean velocity, however, was u; ~ sin?2¢p in case
1 and u; ~ cosy in case 2. The exact profiles with the
resulting potential temperature distributions are shown
in Fig. 1. In both cases forcing was chosen such that
profile 1 is a stationary solution of the equations. As
for the wave part of the initial conditions, time series
1 was initialized with a small contribution of the most
unstable equatorially symmetric normal mode atm = 6
determined from an instability analysis of profile 1. The
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second most unstable normal mode for the same zonal
wavenumber derived from this analysis was used for
an initialization of time series 2.

For illustration, variation of the four Lorenzian en-
ergy types in case 1 relative to their initial values, the
energy exchange coefficients and diabatic energy
losses and gains are shown in Fig. 2 for the first 200 d.
Normalization constants are E, = (p,£2%a$)/g for en-
ergy and 2E, for energy exchange, gain, or loss; p, is
the surface pressure; g is the acceleration due to grav-
ity; and K and A denote kinetic and available potential
energy of the eddies (index E) or the zonal-mean wind
(index Z). The diabatic terms are defined as follows:
H, denotes gains of A,, H gains of Az, Dg losses of
Kg, and Dy losses of K7 due to surface drag, thermal
damping, forcing, and horizontal diffusion. Multiple
life cycles occur that have a clearly defined baroclinic
growth phase where the waves mainly drain energy
from Az. As documented by a rise in Cx (here conver-
sion from K, to K, where C, denotes conversion from
Az to Ap and C from Ag to K¢), the decay phase has a
barotropic contribution. It should, however, be noted
that diabatic losses are comparable in magnitude to
barotropic wave decay. As will be discussed later, the
interplay of these two factors with each other seems to
be responsible for the appearance of multiple life cy-
cles. Since each time series contains about 20 life cy-
cles, we consider our statistics to be reasonably good.

energy variation
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FiG. 2. Relative energy variation, energy exchange, and diabatic
energy gains and losses for time series 1 with surface drag and ther-
mal damping. Only the first 200 d are shown.
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TABLE 1. Error of variances and tendency variances in a simulation
of the two time series with thermal damping and surface friction with
two or three PIPs.

Time series 1 Time series 2

€/107* €/1074 /107 /1074
2 PIPs 244 17.8 257 6.18
3 PIPs 3.48 1.91 3.49 0.74

From each run we obtained a time series containing
all spectral coefficients corresponding to m = 0 and m
= 6 and the corresponding tendencies for every day.
Time series 1 was then used to find the structures of a
given number of wave PIPs by minimizing the error in
explained tendency variance

_ €
AT TE

(32)

€1

The minimization was performed numerically by ap-
plying a sequential quadratic programming algorithm
as available in the NAG library (Ford and Pool 1984).
The routine we used requires as input a subroutine cal-
culating the error function and all its gradients at a
specified point. The minimum is approached by a
quasi-Newtonian search using an approximate Hessian
matrix, which is estimated from the gradients of the
error function at all points passed during the search.
Zonal PIPs were kept fixed as defined in section 3. To
get a second measure for the quality of the resulting
patterns, these were also used to determine the error in
explained variance

?hﬂl2

AR G3)

€2

of the time series. The brackets denote time averaging.
The errors of explained tendency variance and variance
of time series 2 were then calculated using the same
patterns. Thus a measure of the generality of our results
with respect to varying initial conditions could be ob-
tained.

In the analysis, the wave subspace was first assumed
to contain two PIPs. This number was then increased
to three. Following the procedure described above, we
found errors in explained tendency variance and vari-
ance as summarized in Table 1. It is found that ex-
plained variance and tendency variance do not depend
very much on the time series that the PIPs are applied
to. Note that the PIPs were determined by minimizing
the tendency variance error of series 1. Thus it seems
that the structures determined have a quite general na-
ture and do not depend very much on the initial con-
ditions of the examined time series. It should also be
mentioned that the optimization result for the effec-
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tively forced stationary solution Z; agrees nearly per-
fectly with profile 1 from Fig. 1. The method thus
seems to be able to evaluate the forcing of a model
from a time series of its spectral coefficients and their
tendencies.

In order to demonstrate what the numbers in Table
1 mean we have projected the patterns derived onto the
initial state of series 1 by applying (5). The result was
used as the initial state for an integration of the PIP
model tendency equations (17) and (18). The resulting
time dependencies of the four energy types are com-
pared with the analyzed data in Fig. 3. Two PIPs are
only able to predict the first life cycle well, whereas the
improvement gained by adding a third pattern is suffi-
cient to capture most of the dynamics. The PIP model
and the complete two-layer model produce very similar
time dependencies for all energies. Minimum and max-
imum values as well as the length of the life cycles are
reproduced. The PIP analysis therefore is able to extract
from a model with good horizontal resolution few
structures that describe most of the dynamics of mul-
tiple baroclinic wave life cycles in the model without
having to perform a drastic truncation to, for example,
R3 or R4. The identified patterns contain the full rele-
vant R15 dynamics.

b. Discussion

The remaining question is what part the three PIPs
play in the multiple life cycles. We will show how two
of them describe the baroclinic growth phases, and the
role of the remaining one in the decay phase will be
discussed. In connection with this, the role of dissipa-
tion will also be considered. To show the ability of a
PIP analysis to extract the basic dynamic signatures of
a process, we will also point out some well-known fea-
tures and show how they appear within the framework
of a PIP model.

First of all it is useful to look a bit more closely at
how much the PIPs contribute to the different phases
of a life cycle. For this purpose we have projected the
patterns onto day 150 of time series 1 and integrated
the PIP model from there up to day 200. The depen-
dence of amplitudes and phases of the coefficients a,
of the three wave PIPs are displayed in Fig. 4. All three
PIPs oscillate at only slightly varying frequencies. The
corresponding periods are roughly between 6 and 8
days. PIP 1 and 2 are very similar to each other in the
time dependence of their coefficients. PIP 3, on the
other hand, is most active in the decay phase of a life
cycle, whereas it does not contribute significantly to the
growth phase. Further insight into the nature of the
three PIPs can be gained by inspecting the latitude de-
pendence of amplitude and phase of the patterns them-
selves (Fig. 5). The streamfunction maximum of PIP
1 is at midlatitudes, whereas for PIP 2 and 3 this is
clearly shifted to lower or higher latitudes. The latter
two are also more variable with respect to latitude.
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FiG. 3. Comparison of an integration of the PIP model for time
series 1 with the real data (dotted line). Results of an the optimization
using two wave PIPs are indicated by a dashed line, those from the
three-PIP optimization by a solid line.

Higher meridional wavenumbers thus contribute to
them more strongly than to PIP 1. There are also quite
obvious differences in the phases of the streamfunction
on the northern and southern flanks of the wind maxi-
mum. Most important is the inversion of the phase de-
cay with latitude north of 60°N for PIP 3. Here north-
ward momentum transport is replaced by southward
transport. The same observations also hold at least
qualitatively in the lower layer. Notable as a whole is
the strong phase gradient of PIP 3, indicating a struc-
ture that is significantly tilted in the zonal direction so
that effective momentum transport becomes possible.
In both layers the phase difference of PIP 3 between
10° and 60°N is much larger than that of PIP 1.

From the above said, it should be expected that only
PIP 1 and 2 are relevant for a simulation of the growth
phases. To test this hypothesis we have projected the
three patterns onto days representing the beginning of
the early growth phase and days at the beginning of the
late growth phase. The PIP model has then been inte-
grated from there only considering PIP 1 or PIP 1 and
PIP 2. It was found that the initial growth phase can be
simulated well by using only PIP 1. It should therefore
be the structure that bears the most similarity to the
most unstable normal mode of profile 1. Indeed, the
comparison of this normal mode with PIP 1 in Fig. 4
shows that this is the case. As for the late growth phase,
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it was found that it can be simulated by using PIP 1
and 2 but not PIP 1 only. By including PIP 2 only is
the barotropic energy conversion Cx simulated appro-
priately. We thus conclude that PIP 2 captures the
weakly nonlinear interaction with the zonal-mean zonal
wind that increases in importance with increasing wave
intensity.

However, projecting the patterns onto day 150 of the’
time series and integrating from there with and without
PIP 3 shows that the latter is indispensable for an ac-
curate description of the decay phase (Fig. 6): for some
reason the eddy energies gain far too much. Due to the
accordingly strong conversion processes, Az becomes
too small, and K gains too much. An equilibrium state
is assumed, and no further life cycle results. Thus PIP
3 seems to be associated with some nonlinear interac-
tion process that is not sufficiently contained in PIP 1
and 2.

In order to provide more insight into the dynamical
nature of PIP 3, Fig. 7 shows the upper-layer meridi-
onal momentum and potential temperature transport
and the corresponding Eliassen—Palm flux (EPF) di-
vergence one would obtain if only one of the three PIPs
were present. Momentum transport south of the jet
maximum in the forced stationary solution is deter-
mined by PIP 2, whereas on the northern side PIP 3
has its maximum in momentum transport. At very high

PIP amplitudes

amplitude

PIP phases
180 .~ - s
R\ 5
j= Vo !
] 1o '
o, o H
2 0 Vi i
g \ !
S g0l i \
- } LI
M50 170 180 190 200
time [d]

FiG. 4. Amplitudes and phases of the three wave PIPs correspond-
ing to the three-PIP simulation of time series 1 between days 150 and
200. The patterns are numbered according to the maximum ampli-
tudes they attain during a life cycle.
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FiG. 5. Latitude dependence of the upper- and lower-layer stream-
function amplitudes and phases of the three wave PIPs corresponding
to the three-PIP simulation of time series 1. The amplitudes are dis-
played in arbitrary units. The most unstable normal mode of the
forced stationary state is also shown.

latitudes the latter also has a southward component. The
resulting interaction with the zonally symmetric state is
indicated by the EPF divergence. It is seen that PIPs 2
and 3 generate the barotropic structure of the jet on its
flanks. The gradients are steepened. Thus barotropic wave
decay is initiated, and higher wave number components
are nonlinearly excited. This is reflected in the high wave
number structure of the PIPs themselves, which is shown
in Fig. 8 where the spectral intensity

I, = |y |? + |70, (34)
is plotted versus the meridional wave number n — m. Here
Y, and 7], denote the spectral components of the vth PIP
in barotropic and baroclinic streamfunction (so far indi-
cated by g;,). In going from PIP 1 to PIPs 2 and 3 there
is more energy at higher meridional wave numbers. We
conclude that this pattern is necessary to describe a flux of
potential enstrophy -to higher latitudinal modes.

This is, however, only one part of the decisive prop-
erties of PIP 3. More information about this pattern can
be gained by projecting PIPs 1-3 onto day 160 when
PIP 3 is rather prominent and checking the energy con-
version and diabatic losses with and without PIP 3.
Thus the most important factors contributing to the
wave decay, which is only possible in the presence of
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PIP 3, can be seen: PIP 3 increases Cc/C, from 0.81
to 0.94, D/ Cg from 0.60 to 0.93, and Cx/Cg from 0.23
to 0.34. By inclusion of PIP 3 only is it possible to
describe the relative phases between the meridional
wind field and the temperature and zonal wind field
appropriately. The decay in K is due to two factors:

1) Ck increases simultaneously with PIP 3, and

2) especially in the later part of the decay phase,.the
relative contribution of dissipation of K is rather
strongly enhanced. '

Where does this dramatic change in the influence of
dissipation originate? Closer inspection reveals that it
is intimately connected with the high wave number
structure of PIP 3. Assuming for the moment a wave
streamfunction that contains only the vth PIP, it can be
shown that D can formally be split up in contributions
from thermal damping, surface friction, and horizontal
diffusion in the following way:

m+15
De = |a,|’lhy ¥ Dy(n~m)

n=m

m+15 m+15
+k Y D(n—m)+«k Y D,(n—m)]. (35)
K
B 4.00-04 —
2 3.0e-04 |
S 20004 |
E  10e04 |
o 0.0e+00
c
>
2 .
£ 1.0e-04 |
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e 0.0e+00
8 25003
[+
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FiG. 6. Energy curves as derived from projecting only the two most
prominent wave patterns (dashed line) or all wave patterns (solid) as
derived from the three-PIP optimization of time series 1 on the nu-

. merical result for day 150 and integrating the PIP model from there

up to day 200. Real data are indicated by a dotted line.
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FiG. 7. Latitude dependence of the upper-layer meridional mo-
mentum transport, potential temperature transport, and upper-layer
EPF divergence associable with each PIP in meaningless units.

It turns out that the part resulting from thermal
damping is virtually negligible for all patterns. The
other two are displayed in Fig. 9. Due to contribu-
tions from higher wave numbers, PIP 3 is the most
effectively dissipated. Therefore the enstrophy cas-
cade to higher wave numbers that seems to be as-
sociated with this pattern also causes stronger eddy
dissipation.

As a consequence of all these factors (including
eddy dissipation), the eddy energies decay, and devel-

spectral intensity

0.5
PIP 1

0.0

0 5 10 15
meridional wave number n-6

FiG. 8. Spectral intensity of the three identified PIPs.
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FiG. 9. Spectral composition of the eddy kinetic energy damping by
surface friction and horizontal diffusion for all PIPs.

opment of the zonally symmetric state now becomes
increasingly dominated by the influences of surface
friction, horizontal diffusion, and thermal forcing. Be-
cause wave activity decays so strongly it is much more
able to reestablish the forced stationary solution than
in the two-PIP case. Comparison of the development
of the zonal-mean zonal wind in both cases shows that
lower-layer winds are decelerated to lower values, and
the upper-layer wind approaches the upper-layer profile

growth rate
20 .
- 4
o . ®
‘?o 10 I 1
= .
Q
kS
£ (VU :
g PY * * * S -
o P
-10 .
150 160 170
time [d]

Fic. 10. Time dependence of the growth rate of the fastest-growing
normal mode at m = 6 determined from a normal mode analysis of
the zonally symmetric state in time series 1 between days 150 and
170.
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1 more closely. The forced stationary solution, how-
ever, is highly baroclinically unstable. Around day 168
this instability takes over, and the eddy energies rise
again.
" In order to confirm this picture, we have performed
a stability analysis of the zonal-mean zonal wind for a
few representative days between days 150 and 170. The
growth rates of the fastest growing normal modes at m
= 6 displayed in Fig. 10 indeed indicate a development
from a stable to an increasingly unstable zonal-mean
zonal wind. Quite interestingly, there is a small dip in
the growth rate around the time when.PIP 3 is most
active. We think that this can be attributed to a more
effective barotropic energy conversion by PIP 3, which
is associated with jet steepening on the northern flank.
This seems to increase the stability of the wind for a
short time until eddy forcing of the zonal-mean wind
finally decays so strongly that dissipation and forcing
become able to nearly reestablish the baroclinically un-
stable zonally symmetric stationary solution of our
model equations. .
. For comparison we have also analyzed a case in
which an equilibrium like the one produced by PIPs
1 and 2 develops in a full simulation. For this we
have increased k, to 0.4 d~'. The initial state was

once more profile 1, and its most unstable normal -

mode at m = 6. The corresponding two- and three-
PIP simulations are shown in Fig. 11. As for the main
qualitative features, two PIPs are now sufficient for
a good simulation. They and the three from the three-
PIP optimization are not shown here for conciseness.
They look very similar to the ones of the less strongly
damped case. It turns out.that the third PIP resem-
bling PIP 3 is not essential for explaining the late
stationary phase. Projecting the three patterns onto
day 100 of our time series, it is found that PIP 3
increases Cg/C, from 0.83 to 0.85, Dg/Cg from 0.73
t0 0.77, and C/Cr from 0.21 to 0.23. It therefore has
a much weaker influence on eddy dissipation and
barotropic energy conversion so that the eddy ener-
gies need not decay. The reason for this could be
more effective damping of this structure due to the
stronger surface friction. Checking the amplitude de-
velopment, we have indeed found that it never attains
an amplitude comparable to that of the most promi-
nent PIP resembling PIP 1. To get a clearer picture
of the late equilibrium we have also performed a sta-
bility analysis of the zonally symmetric state at day
100 of the full simulation. The corresponding growth
rate is 8.5 X 10~*d ~'. This fits into our interpretation
of the equilibrium well. The jet has to be slightly
unstable to facilitate some energy flux into the waves
so that they do not decay because of dissipation. On
the other hand the growth rate is smaller than in a
growth phase of the less strongly damped case ex-
amined above so that wave intensity remains stable.
To test whether the approximate equilibrium is due
more to the barotropic governor mechanism (James
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Fic. 11. Same as Fig. 3 but now with k, = 0.4 d™'".

1987) or baroclinic shear adjustment (Stone 1978),
we have repeated the same stability analysis, now
however replacing either the barotropic streamfunc-
tion or the baroclinic streamfunction of the zonal
mean by the corresponding initial value at day 0. In
the first case we find a maximal growth rate of 1.7 X
1072 d~', in the second case it is —5.1 X 1073d~'.
From these values we conclude that it is more the
increase of the barotropic wind component that
makes the zonal-mean wind nearly stable.

5. Summary and conclusions

As a first step toward finding basic structures and
processes underlying life cycles of baroclinic waves
on the basis of a dynamical approach, we have used
a suitably devised PIP model for the analysis of baro-
clinic wave development in a simple spherical and
quasigeostrophic two-layer model (R15, B-model),
including Newtonian cooling and Ekman surface
friction. It is shown that for a such a model a unique
PIP model exists, provided that it is assumed to de-
scribe the two-layer model data completely. Then all
interaction coefficients describing the linear and non-
linear time development of the pattern amplitudes
can be calculated by projecting the full B-model onto
the patterns. The usefulness of this approach for de-
vising PIP models suitable for the analysis of more
complex datasets from GCMs or observations is also
demonstrated.
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For the moment we have concentrated on two-
layer baroclinic wave life cycles with surface drag
and thermal damping. Three PIPs are detected for
typical values of these parameters that are able to
describe the multiple life cycles sufficiently well both

with respect to the minimum and maximum energies-

attained and to the length of the life cycles. PIPs
found for one set of initial conditions are able to also
explain time series with different initial conditions
nearly equally well. Thus it can be assumed that they
have a quite general nature. Only the interplay of
forcing and dissipation with the nonlinear enstrophy
cascade seems to have an influence on the decisive
patterns that quickly develop irrespectively of the
special initial conditions and dominate the model cli-
mate from then on.

Analyzing the interplay of the identified patterns
with each other and the zonal-mean zonal wind, it is
found that the most prominent PIP (PIP 1) is associated
with the linear baroclinic growth phase. The second one
(PIP 2) is necessary for a correct description of the
weakly nonlinear interaction with the zonally symmet-
ric state during the later part of this phase. PIPs 1 and
2 together are sufficient for an appropriate modeling of
the whole growth phase.

The decay phase of a life cycle, however, cannot
be captured by PIPs 1 and 2 alone. They are also not
able to simulate the initialization of another life cycle
after a decay phase. For this the last PIP (PIP 3) has
to be taken into account. This one is associated with
comparatively weak baroclinic conversion processes
but stronger barotropic energy conversion. Its high-
modal structure indicates that it is connected with a
nonlinear transfer of potential enstrophy to higher
wave numbers. In connection with this, it should also
be noted that PIP 3 fits into the results of an analysis
of quasigeostrophic turbulence in the presence of
barotropic shear given by Sheperd (1987), where he
has shown that the enstrophy cascade occurs by wave
tilting into the zonal direction, which is compatible
with the strong tilt of PIP 3. As a consequence of its
high-modal structure, it is also strongly susceptible
to dissipative damping. Due to this and energy trans-
fer between Ky and K, potential temperature and
momentum transport by the waves are always at a
level enabling thermal forcing and dissipation to act
on the zonal flow such that a zonal-mean state can be
reestablished that is rather similar to the forced sta-
tionary state. This is sufficiently baroclinically un-
stable so that a new life cycle can begin.

For a preliminary evaluation of the potential use-
fulness of PIP analysis one should be aware of Rein-
hold’s (1986) ideas about structural organization of
baroclinic waves in the presence of forcing and dis-
sipation. From our investigations it appears that
structural organization is not limited to as highly
truncated models, as the one he has examined ana-
lytically. Reinhold predicts an increase of the degree
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of structural organization with increasing dissipa-
tion. Indeed, we also find that for increased dissipa-
tion the number of dynamically relevant patterns de-
creases. Moreover, in an additional analysis of the
adiabatic case (initial conditions profile 1 and its
most unstable normal mode at m = 6, for conciseness
not to be discussed here in any detail ), we have iden-
tified 6—8 patterns needed for a reasonable simula-
tion. For sufficiently dissipative systems, PIPs there-
fore bear some potential as a tool for gaining further
insight into the internal dynamics.

As a final remark, it should be mentioned that the
interpretations given here are certainly determined by
our choice of the dissipative parameters. How the PIPs
depend on these will have to be addressed in a future
paper. Additionally, the patterns found could well be
limited to the wave subspace of the zonal wave number
of the initial normal mode. Thus, in spite of some in-
teresting features that have appeared in our analysis,
the case examined is the most simple imaginable. It can
be expected that an analogous examination of datasets
that exhibit a higher degree of nonlinearity, as for ex-
ample in the case of interaction of baroclinic waves
with stationary waves or with higher zonal modes, will
reveal more interesting details. Consequently a corre-
sponding extension of our analysis is presently under
preparation.
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APPENDIX A

Derivation of the Tendency Equations for a B-Model
with Thermal Damping and Surface Drag

The starting point for the derivation are the quasi-
geostrophic two-layer model equations formulated by
Lorenz (1960). Replacing static stability by a constant
parameter and including zonally symmetric vorticity
forcing, surface friction, thermal damping, and hori-
zontal diffusion gives the following set:

2 V= 1w, VY + ) = I(r, V)

+ V(1 = ) + F, — kVVEVY)] (Al)
gV2T =—J(r, V¥ + f) — J(¢, V?1)
+ V- fVx — k(7 — ¢) — kVIVZ(V?ir)] (A2)
90 e
ot + J(¢, 8) - oV

= hy(0 — 6;) — kV*(V?0) (A3)
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bc,V*0 = V- fVT, (A4)

where x denotes the velocity potential, § potential
temperature, 0; its forcing (zonally symmetric), and
f =252 sinp the Coriolis parameter. Replacing the
Coriolis parameter by a constant value f, = 22 singp,
in the thermal wind equation (A4) yields the rela-
tionship

0=AT+C,

b (AS)

where C is a constant. Without loss of generality we
assume C = 0. Also replacing the Coriolis parameter
in the third term of (A2) by f, and using (AS) offers a
simple way of combining (A2) and (A3) by eliminat-
ing the velocity potential from these. Scaling all terms
appropriately, we thus end up with (1) and (2), where
Ty = (bCI,Of)/fE).

APPENDIX B

Spectral Form of the B-Model Tendency Equations

For finding the spectral form of the B-model evo-
lution equations we use the expansions
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w

(o, ) =Y X [T7(OY (v, \)

m=0 l=m

+ TR (Y70, (1 = 6,0)],  (B2)

where Y ;' are the well-known spherical harmonics. A
useful property of these is

Yo =(-D)"Y;" (B3)

To express (1) and (2) in terms of the thus defined
expansion coefficients, we need the interaction inte-
grals
otz = f dQyrJ ., Ym, (B4)
4

which obey the following rules (Silberman 1954):

Chimgm! = —Criming® (BS)
Crmm+ = (=1)™enmm (B6)
Crmi = (=1)™enine. (B7)

They are only nonzero if the resonance condition
(B8)

is satisfied. Inserting (B1) and (B2) into (1) and (2),
projecting the result onto the respective spherical har-
monics, and using (B3) and (B5) - (B8), one obtains
tendency equations that are formally identical to (14)
and (15):

m=m + m,

Yo N = 2 X [Yr(Y (e, V)
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